Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
Sci Total Environ. 2024 Dec 1;954:176649. doi: 10.1016/j.scitotenv.2024.176649. Epub 2024 Oct 1.
Accurately simulating maize (Zea mays L.) yield at the regional scale is of paramount importance for making informed policy adjustments and for ensuring food security. Sobol sensitivity analysis was used in this study to screen sensitive parameters of a process-based crop model (Chinese Agricultural Meteorological Model, CAMM). An upscaling approach was utilized to reduce the intra-pixel heterogeneity error of MODIS LAI. Then upscaled MODIS LAI data were assimilated into the CAMM model through a 4DVar assimilation algorithm to optimize pixel-level sensitive parameters, thereby improving the simulation accuracy of the summer maize growth process and yield. Specific leaf area (SLATB_0, SLATB_1) during the period from emergence to tasseling of summer maize exhibited the strongest impact on summer maize yield. Additionally, the average LAI value within the 85-95 % range of ordered LAI values for small pixels within large pixels effectively reduced the intra-pixel heterogeneity error of MODIS LAI, and pixel-based parameterization of SLATB_0 and SLATB_1 at a larger pixel scale (0.0625°) was achieved. Based on yields recorded at agrometeorological stations from 2015 to 2020, assimilated yields in both data assimilation scheme 1 (DA1, optimization of only the sensitive parameter SLATB_0) and scheme 2 (DA2, simultaneous optimization of sensitive parameters SLATB_0 and SLATB_1) exhibited higher accuracy than schemes without data assimilation (with r values of 0.41-0.72 and NRMSE values of 19-30 %). Furthermore, DA2 showed greater simulation accuracy (r: 0.64-0.93, NRMSE: 9-21 %) than DA1 (r: 0.61-0.91, NRMSE: 12-23 %). Upscaling remotely sensed LAI products can significantly reduce the uncertainties of LAI data at a larger pixel scale, and assimilating these LAI data into crop models can effectively increase the simulation accuracy of crop growth and development processes at the regional scale.
准确模拟区域尺度的玉米(Zea mays L.)产量对于做出明智的政策调整和确保粮食安全至关重要。本研究采用 Sobol 敏感性分析筛选基于过程的作物模型(中国农业气象模型,CAMM)的敏感参数。利用上推方法减少 MODIS LAI 的像元内异质性误差。然后,通过 4DVar 同化算法将上推后的 MODIS LAI 数据同化到 CAMM 模型中,优化像素级敏感参数,从而提高夏玉米生长过程和产量的模拟精度。夏玉米抽雄前的比叶面积(SLATB_0,SLATB_1)对夏玉米产量的影响最大。此外,大像元内小像元有序 LAI 值的 85-95%范围内的平均 LAI 值有效减少了 MODIS LAI 的像元内异质性误差,并实现了更大像素尺度(0.0625°)上的 SLATB_0 和 SLATB_1 的像素基参数化。基于 2015 年至 2020 年农业气象站的产量记录,同化方案 1(DA1,仅优化敏感参数 SLATB_0)和方案 2(DA2,同时优化敏感参数 SLATB_0 和 SLATB_1)的同化产量比无数据同化方案(r 值为 0.41-0.72,NRMSE 值为 19-30%)的精度更高。此外,DA2 的模拟精度(r:0.64-0.93,NRMSE:9-21%)大于 DA1(r:0.61-0.91,NRMSE:12-23%)。上推遥感 LAI 产品可以显著降低较大像素尺度上 LAI 数据的不确定性,将这些 LAI 数据同化到作物模型中可以有效提高区域尺度上作物生长发育过程的模拟精度。