Suppr超能文献

在基于保护性农业的玉米-小麦系统中,利用CERES-玉米(决策支持系统农业技术转移模型)在不同氮素管理方案下对玉米生长和氮素动态进行建模。

Modeling maize growth and nitrogen dynamics using CERES-Maize (DSSAT) under diverse nitrogen management options in a conservation agriculture-based maize-wheat system.

作者信息

Kumar Kamlesh, Parihar C M, Nayak H S, Sena D R, Godara Samarth, Dhakar Rajkumar, Patra Kiranmoy, Sarkar Ayan, Bharadwaj Sneha, Ghasal Prakash Chand, L Meena A, Reddy K Srikanth, Das T K, Jat S L, Sharma D K, Saharawat Y S, Singh Upendra, Jat M L, Gathala M K

机构信息

ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.

ICAR-Indian Institute of Farming System Research, Modipuram, Meerut, U.P., India.

出版信息

Sci Rep. 2024 May 23;14(1):11743. doi: 10.1038/s41598-024-61976-6.

Abstract

Agricultural field experiments are costly and time-consuming, and often struggling to capture spatial and temporal variability. Mechanistic crop growth models offer a solution to understand intricate crop-soil-weather system, aiding farm-level management decisions throughout the growing season. The objective of this study was to calibrate and the Crop Environment Resource Synthesis CERES-Maize (DSSAT v 4.8) model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based maize system. The model was also used to investigate the relationship between, temperature, nitrate and ammoniacal concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on maize yields. Using field data from 2019 and 2020, the DSSAT-CERES-Maize model was calibrated for plant growth stages, leaf area index-LAI, biomass, and yield. Data from 2021 were used to evaluate the model's performance. The treatments consisted of four nitrogen management options, viz., N0 (without nitrogen), N150 (150 kg N/ha through urea), GS (Green seeker-based urea application) and USG (urea super granules @150kg N/ha) in two contrasting tillage systems, i.e., CA-based zero tillage-ZT and conventional tillage-CT. The model accurately simulated maize cultivar's anthesis and physiological maturity, with observed value falling within 5% of the model's predictions range. LAI predictions by the model aligned well with measured values (RMSE 0.57 and nRMSE 10.33%), with a 14.6% prediction error at 60 days. The simulated grain yields generally matched with measured values (with prediction error ranging from 0 to 3%), except for plots without nitrogen application, where the model overestimated yields by 9-16%. The study also demonstrated the model's ability to accurately capture soil nitrate-N levels (RMSE 12.63 kg/ha and nRMSE 12.84%). The study concludes that the DSSAT-CERES-Maize model accurately assessed the impacts of tillage and nitrogen management practices on maize crop's growth, yield, and soil nitrogen dynamics. By providing reliable simulations during the growing season, this modelling approach can facilitate better planning and more efficient resource management. Future research should focus on expanding the model's capabilities and improving its predictions further.

摘要

农业田间试验成本高且耗时,而且常常难以捕捉空间和时间变异性。机理作物生长模型为理解复杂的作物-土壤-天气系统提供了一种解决方案,有助于在整个生长季节做出农场层面的管理决策。本研究的目的是校准作物环境资源综合模型CERES-玉米(DSSAT v 4.8),以模拟基于长期保护性农业(CA)的玉米系统中的作物生长、产量和氮动态。该模型还用于研究温度、土壤中硝酸盐和氨浓度与作物氮吸收之间的关系。此外,该研究探讨了不同耕作方式和肥料氮管理选项对玉米产量的影响。利用2019年和2020年的田间数据,对DSSAT-CERES-玉米模型的作物生长阶段、叶面积指数(LAI)、生物量和产量进行了校准。2021年的数据用于评估模型的性能。试验处理包括四种氮管理选项,即不施氮(N0)、通过尿素施氮150千克/公顷(N150)、基于绿色寻星仪的尿素施用(GS)和每公顷施用150千克氮的尿素超大颗粒(USG),采用两种不同的耕作系统,即基于保护性农业的免耕(ZT)和传统耕作(CT)。该模型准确模拟了玉米品种的开花期和生理成熟期,观测值落在模型预测范围的5%以内。模型对LAI的预测与测量值吻合良好(均方根误差为0.57,标准化均方根误差为10.33%),在60天时预测误差为14.6%。模拟的籽粒产量总体上与测量值相符(预测误差范围为0至3%),但不施氮的地块除外,该模型在这些地块上高估了产量9%至16%。该研究还证明了该模型能够准确捕捉土壤硝态氮水平(均方根误差为12.63千克/公顷,标准化均方根误差为12.84%)。研究得出结论,DSSAT-CERES-玉米模型准确评估了耕作和氮管理措施对玉米作物生长、产量和土壤氮动态的影响。通过在生长季节提供可靠的模拟,这种建模方法可以促进更好的规划和更有效的资源管理。未来的研究应侧重于扩展模型的能力并进一步改进其预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddce/11639734/a89629b3158f/41598_2024_61976_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验