Jiang Yisha, Liu Wenchao, Wang Tao, Wu Yitian, Mei Tingting, Wang Li, Xu Guoheng, Wang Yude, Liu Nannan, Xiao Kai
Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, P.R. China.
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, P.R. China.
Nat Commun. 2024 Oct 3;15(1):8582. doi: 10.1038/s41467-024-52892-4.
A sufficiently high current output of nano energy harvesting devices is highly desired in practical applications, while still a challenge. Theoretical evidence has demonstrated that Coulomb drag based on the ion-electron coupling interaction, can amplify current in nanofluidic energy generation systems, resulting in enhanced energy harvesting. However, experimental validation of this concept is still lacking. Here we develop a nanofluidic chemoelectrical generator (NCEG) consisting of a carbon nanotube membrane (CNTM) sandwiched between metal electrodes, in which spontaneous redox reactions between the metal and oxygen in electrolyte solution enable the movement of ions within the carbon nanotubes. Through Coulomb drag effect between moving ions in these nanotubes and electrons within the CNTM, an amplificated current of 1.2 mA cm is generated, which is 16 times higher than that collected without a CNTM. Meanwhile, one single NCEG unit can produce a high voltage of ~0.8 V and exhibit a linear scalable performance up to tens of volts. Different from the other Coulomb drag systems that need additional energy input, the NCEG with enhanced energy harvesting realizes the ion-electron coupling by its own redox reactions potential, which provides a possibility to drive multiple electronic devices for practical applications.
在实际应用中,人们非常希望纳米能量收集装置能有足够高的电流输出,但这仍然是一个挑战。理论证据表明,基于离子 - 电子耦合相互作用的库仑拖曳可以放大纳米流体能量产生系统中的电流,从而增强能量收集。然而,这一概念仍缺乏实验验证。在此,我们开发了一种纳米流体化学发电机(NCEG),它由夹在金属电极之间的碳纳米管膜(CNTM)组成,其中金属与电解质溶液中的氧气之间的自发氧化还原反应使离子能够在碳纳米管内移动。通过这些纳米管中移动离子与CNTM内电子之间的库仑拖曳效应,产生了1.2 mA/cm的放大电流,这比没有CNTM时收集到的电流高16倍。同时,单个NCEG单元可以产生高达约0.8 V的高电压,并表现出高达数十伏的线性可扩展性能。与其他需要额外能量输入的库仑拖曳系统不同,具有增强能量收集功能的NCEG通过其自身的氧化还原反应电位实现离子 - 电子耦合,这为驱动多个电子设备用于实际应用提供了可能性。