MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany.
Department of Materials Science, Fudan University, Shanghai, China.
Science. 2021 Jan 1;371(6524):46-51. doi: 10.1126/science.abb9554.
Rechargeable alkaline zinc-air batteries promise high energy density and safety but suffer from the sluggish 4 electron (e)/oxygen (O) chemistry that requires participation of water and from the electrochemical irreversibility originating from parasitic reactions caused by caustic electrolytes and atmospheric carbon dioxide. Here, we report a zinc-O/zinc peroxide (ZnO) chemistry that proceeds through a 2e/O process in nonalkaline aqueous electrolytes, which enables highly reversible redox reactions in zinc-air batteries. This ZnO chemistry was made possible by a water-poor and zinc ion (Zn)-rich inner Helmholtz layer on the air cathode caused by the hydrophobic trifluoromethanesulfonate anions. The nonalkaline zinc-air battery thus constructed not only tolerates stable operations in ambient air but also exhibits substantially better reversibility than its alkaline counterpart.
可充电碱性锌空气电池具有高能量密度和安全性,但存在缓慢的 4 电子(e)/氧气(O)化学,需要水的参与,并且由于苛性电解质和大气中的二氧化碳引起的寄生反应,电化学不可逆性。在这里,我们报告了一种锌-O/氧化锌(ZnO)化学,该化学在非碱性水性电解质中通过 2e/O 过程进行,从而使锌空气电池中的氧化还原反应具有高度可逆性。这种 ZnO 化学是通过空气阴极上贫水且富含锌离子(Zn)的内亥姆霍兹层实现的,这是由疏水性三氟甲磺酸根阴离子引起的。因此,构建的非碱性锌空气电池不仅可以在环境空气中稳定运行,而且还表现出比碱性电池更好的可逆性。