Suppr超能文献

截短 M13 噬菌体用于黑暗场条件下大肠杆菌的智能检测

Truncated M13 phage for smart detection of E. coli under dark field.

机构信息

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.

Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.

出版信息

J Nanobiotechnology. 2024 Oct 3;22(1):599. doi: 10.1186/s12951-024-02881-y.

Abstract

BACKGROUND

The urgent need for affordable and rapid detection methodologies for foodborne pathogens, particularly Escherichia coli (E. coli), highlights the importance of developing efficient and widely accessible diagnostic systems. Dark field microscopy, although effective, requires specific isolation of the target bacteria which can be hindered by the high cost of producing specialized antibodies. Alternatively, M13 bacteriophage, which naturally targets E. coli, offers a cost-efficient option with well-established techniques for its display and modification. Nevertheless, its filamentous structure with a large length-diameter ratio contributes to nonspecific binding and low separation efficiency, posing significant challenges. Consequently, refining M13 phage methodologies and their integration with advanced microscopy techniques stands as a critical pathway to improve detection specificity and efficiency in food safety diagnostics.

METHODS

We employed a dual-plasmid strategy to generate a truncated M13 phage (tM13). This engineered tM13 incorporates two key genetic modifications: a partial mutation at the N-terminus of pIII and biotinylation at the hydrophobic end of pVIII. These alterations enable efficient attachment of tM13 to diverse E. coli strains, facilitating rapid magnetic separation. For detection, we additionally implemented a convolutional neural network (CNN)-based algorithm for precise identification and quantification of bacterial cells using dark field microscopy.

RESULTS

The results obtained from spike-in and clinical sample analyses demonstrated the accuracy, high sensitivity (with a detection limit of 10 CFU/μL), and time-saving nature (30 min) of our tM13-based immunomagnetic enrichment approach combined with AI-enabled analytics, thereby supporting its potential to facilitate the identification of diverse E. coli strains in complex samples.

CONCLUSION

The study established a rapid and accurate detection strategy for E. coli utilizing truncated M13 phages as capture probes, along with a dark field microscopy detection platform that integrates an image processing model and convolutional neural network.

摘要

背景

对于食品病原体(尤其是大肠杆菌(E. coli))的经济实惠且快速的检测方法的迫切需求突显了开发高效且广泛适用的诊断系统的重要性。暗场显微镜虽然有效,但需要对目标细菌进行特异性分离,而这可能会受到生产专用抗体的高成本的阻碍。另一方面,天然靶向大肠杆菌的 M13 噬菌体提供了一种具有成本效益的选择,并且已经建立了用于其展示和修饰的成熟技术。然而,其具有大长径比的丝状结构导致非特异性结合和低分离效率,这带来了重大挑战。因此,改进 M13 噬菌体方法并将其与先进的显微镜技术相结合是提高食品安全诊断中检测特异性和效率的关键途径。

方法

我们采用双质粒策略生成了截短的 M13 噬菌体(tM13)。该工程化的 tM13 包含两个关键的遗传修饰:pIII N 端的部分突变和 pVIII 疏水端的生物素化。这些改变使 tM13 能够有效地附着在多种大肠杆菌菌株上,从而促进快速磁分离。为了检测,我们还实施了基于卷积神经网络(CNN)的算法,使用暗场显微镜对细菌细胞进行精确识别和定量。

结果

从添加样本和临床样本分析中得到的结果表明,我们的基于 tM13 的免疫磁珠富集方法与人工智能辅助分析相结合,具有准确性高(检测限为 10 CFU/μL)、灵敏度高(检测限为 10 CFU/μL)、时间节省(30 分钟)的特点,支持其在复杂样本中识别多种大肠杆菌菌株的潜力。

结论

该研究建立了一种利用截短的 M13 噬菌体作为捕获探针的快速准确的大肠杆菌检测策略,以及一种集成图像处理模型和卷积神经网络的暗场显微镜检测平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bef6/11451008/fee786863e1c/12951_2024_2881_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验