Suppr超能文献

先进的锌阳极:水系锌离子电池性能提升策略

Advancing Zinc Anodes: Strategies for Enhanced Performance in Aqueous Zinc-Ion Batteries.

作者信息

Upreti Bharat Bhushan, Kamboj Navpreet, Dey Ramendra Sundar

机构信息

Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.

出版信息

Small. 2025 Feb;21(7):e2408138. doi: 10.1002/smll.202408138. Epub 2024 Oct 4.

Abstract

The promising features of aqueous zinc ion batteries (AZIBs), including their inherent safety, environmental friendliness, abundant raw materials, cost-effectiveness, and simple manufacturing process, position them as strong candidates for large-scale energy storage. However, their practical application faces significant challenges, such as uncontrolled dendritic growth, undesirable side reactions, and hydrogen evolution reactions (HER), which undermine the efficiency and longevity of the system. To address these issues, extensive research has been conducted to improve these batteries' energy density and lifespan. This comprehensive review explores the fundamental mechanisms of zinc dendrite formation, its properties, and the interfacial chemistry between the electrode and electrolyte. It also delves into strategies for protecting the zinc anode, with a focus on the modulation of zinc ion deposition dynamics at the electrolyte interface. The discussion concludes with an evaluation of the current challenges and future prospects of AZIB, aiming to enhance their viability for grid-scale energy storage solutions.

摘要

水系锌离子电池(AZIBs)具有诸多令人瞩目的特性,包括本质安全性、环境友好性、原材料丰富、成本效益高以及制造工艺简单等,这些特性使其成为大规模储能的有力候选者。然而,其实际应用面临重大挑战,如不受控制的枝晶生长、不良副反应和析氢反应(HER),这些都会损害系统的效率和寿命。为解决这些问题,人们开展了广泛研究以提高这些电池的能量密度和使用寿命。这篇综述探讨了锌枝晶形成的基本机制、其性质以及电极与电解质之间的界面化学。它还深入研究了保护锌负极的策略,重点是调节电解质界面处锌离子的沉积动力学。讨论最后评估了水系锌离子电池当前面临的挑战和未来前景,旨在提高其在电网规模储能解决方案中的可行性。

相似文献

1
Advancing Zinc Anodes: Strategies for Enhanced Performance in Aqueous Zinc-Ion Batteries.
Small. 2025 Feb;21(7):e2408138. doi: 10.1002/smll.202408138. Epub 2024 Oct 4.
2
Advances of Nanomaterials for High-Efficiency Zn Metal Anodes in Aqueous Zinc-Ion Batteries.
ACS Nano. 2024 Jun 25;18(25):16063-16090. doi: 10.1021/acsnano.4c06008. Epub 2024 Jun 13.
3
Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes.
Chem Rec. 2022 Oct;22(10):e202200088. doi: 10.1002/tcr.202200088. Epub 2022 Jun 2.
4
Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
Chem Asian J. 2022 Jul 15;17(14):e202200289. doi: 10.1002/asia.202200289. Epub 2022 May 23.
5
Recent Progress in Aqueous Zinc-ion Batteries at High Zinc Utilization.
ChemSusChem. 2025 Jan 2;18(1):e202401166. doi: 10.1002/cssc.202401166. Epub 2024 Sep 6.
7
Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries.
ACS Appl Mater Interfaces. 2023 Jan 25;15(3):4152-4165. doi: 10.1021/acsami.2c21135. Epub 2023 Jan 11.
10
Polyoxometalate solution passivation enabling dendrite-free and high-performance zinc anodes in aqueous zinc-ion batteries.
J Colloid Interface Sci. 2024 Sep;669:886-895. doi: 10.1016/j.jcis.2024.05.043. Epub 2024 May 8.

引用本文的文献

1
Nanomaterials for Zinc Batteries-Aerogels.
Nanomaterials (Basel). 2025 Jan 26;15(3):194. doi: 10.3390/nano15030194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验