Suppr超能文献

儿童神经母细胞瘤远处转移的临床预测模型:基于监测、流行病学和最终结果(SEER)数据库的分析

A clinical prediction model for distant metastases of pediatric neuroblastoma: an analysis based on the SEER database.

作者信息

Yan Zhiwei, Wu Yumeng, Chen Yuehua, Xu Jian, Zhang Xiubing, Yin Qiyou

机构信息

Department of Paediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.

Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China.

出版信息

Front Pediatr. 2024 Sep 19;12:1417818. doi: 10.3389/fped.2024.1417818. eCollection 2024.

Abstract

BACKGROUND

Patients with distant metastases from neuroblastoma (NB) usually have a poorer prognosis, and early diagnosis is essential to prevent distant metastases. The aim was to develop a machine-learning model for predicting the risk of distant metastasis in patients with neuroblastoma to aid clinical diagnosis and treatment decisions.

METHODS

We built a predictive model using data from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2018 on 1,542 patients with neuroblastoma. Seven machine-learning methods were employed to forecast the likelihood of neuroblastoma distant metastases. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for building machine learning models. Secondly, the subject operating characteristic area under the curve (AUC), Precision-Recall (PR) curves, decision curve analysis (DCA), and calibration curves were used to assess model performance. To further explain the optimal model, the Shapley summation interpretation method (SHAP) was applied. Ultimately, the best model was used to create an online calculator that estimates the likelihood of neuroblastoma distant metastases.

RESULTS

The study included 1,542 patients with neuroblastoma, multifactorial logistic regression analysis showed that age, histology, tumor size, tumor grade, primary site, surgery, chemotherapy, and radiotherapy were independent risk factors for distant metastasis of neuroblastoma (< 0.05). Logistic regression (LR) was found to be the optimal algorithm among the seven constructed, with the highest AUC values of 0.835 and 0.850 in the training and validation sets, respectively. Finally, we used the logistic regression model to build a network calculator for distant metastasis of neuroblastoma.

CONCLUSION

The study developed and validated a machine learning model based on clinical and pathological information for predicting the risk of distant metastasis in patients with neuroblastoma, which may help physicians make clinical decisions.

摘要

背景

神经母细胞瘤(NB)发生远处转移的患者通常预后较差,早期诊断对于预防远处转移至关重要。本研究旨在开发一种机器学习模型,用于预测神经母细胞瘤患者发生远处转移的风险,以辅助临床诊断和治疗决策。

方法

我们使用2010年至2018年监测、流行病学和最终结果(SEER)数据库中1542例神经母细胞瘤患者的数据构建了一个预测模型。采用七种机器学习方法来预测神经母细胞瘤远处转移的可能性。单因素和多因素逻辑回归分析用于确定构建机器学习模型的独立危险因素。其次,使用受试者工作特征曲线下面积(AUC)、精确召回率(PR)曲线、决策曲线分析(DCA)和校准曲线来评估模型性能。为了进一步解释最佳模型,应用了Shapley值相加解释法(SHAP)。最终,使用最佳模型创建了一个在线计算器,用于估计神经母细胞瘤远处转移的可能性。

结果

该研究纳入了1542例神经母细胞瘤患者,多因素逻辑回归分析显示,年龄、组织学类型、肿瘤大小、肿瘤分级、原发部位、手术、化疗和放疗是神经母细胞瘤远处转移的独立危险因素(<0.05)。在构建的七种算法中,逻辑回归(LR)被发现是最优算法,在训练集和验证集中的AUC值最高,分别为0.835和0.850。最后,我们使用逻辑回归模型构建了一个神经母细胞瘤远处转移的网络计算器。

结论

本研究基于临床和病理信息开发并验证了一种机器学习模型,用于预测神经母细胞瘤患者发生远处转移的风险,这可能有助于医生做出临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54cc/11447546/4e17dd9c9472/fped-12-1417818-g001.jpg

相似文献

1
A clinical prediction model for distant metastases of pediatric neuroblastoma: an analysis based on the SEER database.
Front Pediatr. 2024 Sep 19;12:1417818. doi: 10.3389/fped.2024.1417818. eCollection 2024.
2
A machine learning-based model for predicting distant metastasis in patients with rectal cancer.
Front Oncol. 2023 Aug 15;13:1235121. doi: 10.3389/fonc.2023.1235121. eCollection 2023.
3
Machine learning based on SEER database to predict distant metastasis of thyroid cancer.
Endocrine. 2024 Jun;84(3):1040-1050. doi: 10.1007/s12020-023-03657-4. Epub 2023 Dec 29.
4
Uveal melanoma distant metastasis prediction system: A retrospective observational study based on machine learning.
Cancer Sci. 2024 Sep;115(9):3107-3126. doi: 10.1111/cas.16276. Epub 2024 Jul 11.
6
Applying machine learning techniques to predict the risk of lung metastases from rectal cancer: a real-world retrospective study.
Front Oncol. 2023 May 24;13:1183072. doi: 10.3389/fonc.2023.1183072. eCollection 2023.
7
Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
Aging Clin Exp Res. 2023 Nov;35(11):2643-2656. doi: 10.1007/s40520-023-02550-4. Epub 2023 Sep 21.
10
Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma.
Cancer Med. 2023 Feb;12(4):5025-5034. doi: 10.1002/cam4.5225. Epub 2022 Sep 9.

引用本文的文献

本文引用的文献

1
Outcomes of acute ischemic stroke among patients with renal cell carcinoma: A nationwide analysis.
J Stroke Cerebrovasc Dis. 2024 Aug;33(8):107688. doi: 10.1016/j.jstrokecerebrovasdis.2024.107688. Epub 2024 Mar 21.
2
Persistent poverty disparities in incidence and outcomes among oral and pharynx cancer patients.
Cancer Causes Control. 2024 Jul;35(7):1063-1073. doi: 10.1007/s10552-024-01867-3. Epub 2024 Mar 23.
5
Predicting vitamin D deficiency using optimized random forest classifier.
Clin Nutr ESPEN. 2024 Apr;60:1-10. doi: 10.1016/j.clnesp.2023.12.146. Epub 2023 Dec 28.
8
Viral Immunogenicity Prediction by Machine Learning Methods.
Int J Mol Sci. 2024 Mar 3;25(5):2949. doi: 10.3390/ijms25052949.
10
SHAP value-based ERP analysis (SHERPA): Increasing the sensitivity of EEG signals with explainable AI methods.
Behav Res Methods. 2024 Sep;56(6):6067-6081. doi: 10.3758/s13428-023-02335-7. Epub 2024 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验