Suppr超能文献

用于预测肝细胞癌生存结果和免疫治疗反应的血管生成与铁死亡基因的综合分析

Comprehensive Analysis of Angiogenesis and Ferroptosis Genes for Predicting the Survival Outcome and Immunotherapy Response of Hepatocellular Carcinoma.

作者信息

Wang Peng, Kong Guilian

机构信息

Department of Nuclear Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, 450003, People's Republic of China.

出版信息

J Hepatocell Carcinoma. 2024 Sep 29;11:1845-1859. doi: 10.2147/JHC.S483647. eCollection 2024.

Abstract

BACKGROUND

Angiogenesis and ferroptosis are both linked to hepatocellular carcinoma (HCC) development, recurrence, and medication resistance. As a result, a thorough examination of the link between genes associated with angiogenesis and ferroptosis and immunotherapy efficacy is required to improve the dismal prognosis of HCC patients.

METHODS

The molecular subtypes were found using a non-negative matrix factorization technique (NMF) based on the genes associated with angiogenesis and ferroptosis. Based on the differentially expressed genes (DEGs) screed between different molecular subtypes, an angiogenesis and ferroptosis-related prognostic stratification model was built using LASSO-COX regression, random forest technique, and extreme gradient boosting (XGBoost), which was further validated in the ICGC and GSE14520 databases. The impact of this model on tumor microenvironment (TME) and immunotherapy sensitivity was also investigated. The expression levels of candidate genes were detected and validated by Real-Time PCR and immunohistochemistry between liver cancer tissues and adjacent non-tumor liver tissues.

RESULTS

Both angiogenesis and ferroptosis-related genes can significantly divide HCC patients into two subgroups with different survival outcomes, mutation profiles, and immune microenvironments. We screened six core genes (SLC10A1, PAEP, DPYSL4, MSC, NQO1, and CD24) for the construction of prognostic models by three machine learning methods after intersecting DEGs between angiogenesis and ferroptosis-related subgroups. In both the TCGA, ICGC, and GSE14520 datasets, the model exhibits high prediction efficiency based on the analysis of KM survival curves and ROC curves. Immunomodulatory genes analysis suggested that the model could be used to predict which patients are most likely to benefit from immunotherapy. Furthermore, the transcriptional expression levels of SLC10A1 in the validation experiment matched the outcomes derived from public datasets.

CONCLUSIONS

We identified a new angiogenesis and ferroptosis-related signature that might offer the molecular characteristic information needed for an efficient prognostic assessment and perhaps tailored treatment for HCC patients.

摘要

背景

血管生成和铁死亡均与肝细胞癌(HCC)的发生、复发及耐药相关。因此,需要深入研究血管生成和铁死亡相关基因与免疫治疗疗效之间的联系,以改善HCC患者的不良预后。

方法

基于与血管生成和铁死亡相关的基因,采用非负矩阵分解技术(NMF)发现分子亚型。基于不同分子亚型之间筛选出的差异表达基因(DEG),使用LASSO-COX回归、随机森林技术和极端梯度提升(XGBoost)构建血管生成和铁死亡相关的预后分层模型,并在ICGC和GSE14520数据库中进一步验证。还研究了该模型对肿瘤微环境(TME)和免疫治疗敏感性的影响。通过实时PCR和免疫组化检测并验证肝癌组织和癌旁非肿瘤肝组织中候选基因的表达水平。

结果

血管生成和铁死亡相关基因均可将HCC患者显著分为两个具有不同生存结局、突变谱和免疫微环境的亚组。在血管生成和铁死亡相关亚组之间的DEG交叉后,我们通过三种机器学习方法筛选出六个核心基因(SLC10A1、PAEP、DPYSL4、MSC、NQO1和CD24)用于构建预后模型。在TCGA、ICGC和GSE14520数据集中,基于KM生存曲线和ROC曲线分析,该模型均表现出较高的预测效率。免疫调节基因分析表明,该模型可用于预测哪些患者最可能从免疫治疗中获益。此外,验证实验中SLC10A1的转录表达水平与公共数据集得出的结果相符。

结论

我们鉴定出一种新的血管生成和铁死亡相关特征,可能为HCC患者的有效预后评估及个性化治疗提供所需的分子特征信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5966/11448465/dcb5c3757544/JHC-11-1845-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验