Suppr超能文献

量子洞察部分分子印迹微球用于抗癌治疗:实验和理论研究。

Quantum Insights into Partially Molecular Imprinted Microspheres for Anticancer Therapeutics: Experimental and Theoretical Studies.

机构信息

Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.

Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.

出版信息

ACS Biomater Sci Eng. 2024 Nov 11;10(11):7005-7017. doi: 10.1021/acsbiomaterials.4c01249. Epub 2024 Oct 4.

Abstract

Drug solubility is a determining factor for controlled release, and solubility-dependent release kinetics can be modified by changing the drug's state in the polymer matrix through partial molecular imprinting (PMI), although research in this area remains limited. This novel PMI approach creates nanocavities within the polymer by partially retaining the imprinting molecule and trapping the drug. Such a method holds promise for developing advanced biomaterial-based drug delivery systems for anticancer therapies. In this study, we developed microspheres designed for anticancer drug delivery utilizing PMI to enhance controlled release properties. Poly(vinyl alcohol) (PVA) microspheres were partially imprinted with aspirin (ASP) to create nanocavities for gemcitabine (GEM) molecules, inducing a polymorphic shift of GEM within the polymer matrix. This novel PMI approach enhanced drug release properties by enabling control over the drug crystallinity and release rate. The PVA-ASP-GEM complex showed zero-order release kinetics, releasing 21.6% of GEM over 48 h, maintaining steady state release profile. In contrast, nonimprinted PVA-GEM microspheres exhibited first-order kinetics with a faster release of 46.85% in the same period. Quantum insights from density functional theory (DFT) calculations revealed the superior stability of the PVA-ASP-GEM complex, with a binding free energy of -56.03 kcal/mol, compared to -29.07 kcal/mol for PVA-GEM. Molecular dynamics (MD) simulations demonstrated that ASP's presence created nanocavities that restricted GEM's movement, further contributing to the controlled release. Experimental validation through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman spectroscopy confirmed the polymorphic transitions within the PVA-ASP-GEM complex. This PMI-based approach offers a promising method for modulating drug release kinetics and improving the stability of anticancer therapeutics, paving the way for innovative biomaterial-based drug delivery systems.

摘要

药物溶解度是控制释放的决定因素,通过部分分子印迹(PMI)改变药物在聚合物基质中的状态,可以改变依赖于溶解度的释放动力学,尽管该领域的研究仍然有限。这种新的 PMI 方法通过部分保留印迹分子并捕获药物,在聚合物中创建纳米腔。这种方法有望为开发基于先进生物材料的抗癌治疗药物输送系统提供新途径。在这项研究中,我们开发了利用 PMI 增强控制释放性能的用于抗癌药物输送的微球。聚(乙烯醇)(PVA)微球部分印迹阿司匹林(ASP)以创建用于吉西他滨(GEM)分子的纳米腔,诱导 GEM 在聚合物基质中发生多晶型转变。这种新的 PMI 方法通过控制药物结晶度和释放率来增强药物释放性能。PVA-ASP-GEM 复合物表现出零级释放动力学,在 48 小时内释放 21.6%的 GEM,维持稳定的释放曲线。相比之下,非印迹的 PVA-GEM 微球在同一时间段内表现出更快的一级释放动力学,释放了 46.85%。密度泛函理论(DFT)计算的量子洞察揭示了 PVA-ASP-GEM 复合物的优越稳定性,其结合自由能为-56.03 kcal/mol,而 PVA-GEM 为-29.07 kcal/mol。分子动力学(MD)模拟表明,ASP 的存在创造了纳米腔,限制了 GEM 的运动,进一步促进了控制释放。通过差示扫描量热法(DSC)、热重分析(TGA)、X 射线衍射(XRD)和拉曼光谱学的实验验证证实了 PVA-ASP-GEM 复合物中的多晶型转变。这种基于 PMI 的方法为调节药物释放动力学和提高抗癌治疗药物的稳定性提供了一种有前途的方法,为创新的基于生物材料的药物输送系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验