Suppr超能文献

BioSAM:从超像素图生成用于生物实例分割的SAM提示

BioSAM: Generating SAM Prompts From Superpixel Graph for Biological Instance Segmentation.

作者信息

Cai Miaomiao, Liu Xiaoyu, Xiong Zhiwei, Chen Xuejin

出版信息

IEEE J Biomed Health Inform. 2025 Jan;29(1):273-284. doi: 10.1109/JBHI.2024.3474706. Epub 2025 Jan 7.

Abstract

Proposal-free instance segmentation methods have significantly advanced the field of biological image analysis. Recently, the Segment Anything Model (SAM) has shown an extraordinary ability to handle challenging instance boundaries. However, directly applying SAM to biological images that contain instances with complex morphologies and dense distributions fails to yield satisfactory results. In this work, we propose BioSAM, a new biological instance segmentation framework generating SAM prompts from a superpixel graph. Specifically, to avoid over-merging, we first generate sufficient superpixels as graph nodes and construct an initialized graph. We then generate initial prompts from each superpixel and aggregate them through a graph neural network (GNN) by predicting the relationship of superpixels to avoid over-segmentation. We employ the SAM encoder embeddings and the SAM-assisted superpixel similarity as new features for the graph to enhance its discrimination capability. With the graph-based prompt aggregation, we utilize the aggregated prompts in SAM to refine the segmentation and generate more accurate instance boundaries. Comprehensive experiments on four representative biological datasets demonstrate that our proposed method outperforms state-of-the-art methods.

摘要

无提议实例分割方法显著推动了生物图像分析领域的发展。最近,分割一切模型(SAM)已展现出处理具有挑战性的实例边界的非凡能力。然而,直接将SAM应用于包含形态复杂且分布密集的实例的生物图像时,无法产生令人满意的结果。在这项工作中,我们提出了BioSAM,这是一种新的生物实例分割框架,可从超像素图生成SAM提示。具体而言,为避免过度合并,我们首先生成足够的超像素作为图节点并构建一个初始化图。然后,我们从每个超像素生成初始提示,并通过预测超像素之间的关系,利用图神经网络(GNN)对它们进行聚合,以避免过度分割。我们将SAM编码器嵌入和SAM辅助的超像素相似度作为图的新特征,以增强其辨别能力。通过基于图的提示聚合,我们利用SAM中的聚合提示来细化分割并生成更准确的实例边界。在四个具有代表性的生物数据集上进行的综合实验表明,我们提出的方法优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验