Suppr超能文献

用于先天性代谢缺陷的非靶向代谢组学:一种校正批次间差异的可持续参考物质的开发与评估

Untargeted Metabolomics for Inborn Errors of Metabolism: Development and Evaluation of a Sustainable Reference Material for Correcting Inter-Batch Variability.

作者信息

Garrett Rafael, Ptolemy Adam S, Pickett Sara, Kellogg Mark D, Peake Roy W A

机构信息

Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

Metabolomics Laboratory, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

出版信息

Clin Chem. 2024 Dec 2;70(12):1452-1462. doi: 10.1093/clinchem/hvae141.

Abstract

BACKGROUND

Untargeted metabolomics has shown promise in expanding screening and diagnostic capabilities for inborn errors of metabolism (IEMs). However, inter-batch variability remains a major barrier to its implementation in the clinical laboratory, despite attempts to address this through normalization techniques. We have developed a sustainable, matrix-matched reference material (RM) using the iterative batch averaging method (IBAT) to correct inter-batch variability in liquid chromatography-high-resolution mass spectrometry-based untargeted metabolomics for IEM screening.

METHODS

The RM was created using pooled batches of remnant plasma specimens. The batch size, number of batch iterations per RM, and stability compared to a conventional pool of specimens were determined. The effectiveness of the RM for correcting inter-batch variability in routine screening was evaluated using plasma collected from a cohort of phenylketonuria (PKU) patients.

RESULTS

The RM exhibited lower metabolite variability between iterations over time compared to metabolites from individual batches or individual specimens used for its creation. In addition, the mean variation across amino acid (n = 19) concentrations over 12 weeks was lower for the RM (CVtotal = 8.8%; range 4.7%-25.3%) compared to the specimen pool (CVtotal = 24.6%; range 9.0%-108.3%). When utilized in IEM screening, RM normalization minimized unwanted inter-batch variation and enabled the correct classification of 30 PKU patients analyzed 1 month apart from 146 non-PKU controls.

CONCLUSIONS

Our RM minimizes inter-batch variability in untargeted metabolomics and demonstrated its potential for routine IEM screening in a cohort of PKU patients. It provides a practical and sustainable solution for data normalization in untargeted metabolomics for clinical laboratories.

摘要

背景

非靶向代谢组学在拓展先天性代谢缺陷(IEMs)的筛查和诊断能力方面已展现出前景。然而,尽管已尝试通过归一化技术解决这一问题,但批次间差异仍是其在临床实验室应用的主要障碍。我们利用迭代批次平均法(IBAT)开发了一种可持续的、基质匹配的参考物质(RM),以校正基于液相色谱 - 高分辨率质谱的非靶向代谢组学用于IEM筛查时的批次间差异。

方法

使用合并的残余血浆标本批次创建RM。确定了每个RM的批次大小、批次迭代次数以及与传统标本库相比的稳定性。使用从一组苯丙酮尿症(PKU)患者采集的血浆评估RM在常规筛查中校正批次间差异的有效性。

结果

与用于创建RM的单个批次或单个标本中的代谢物相比,RM在不同时间的迭代之间表现出较低的代谢物变异性。此外,RM在12周内氨基酸(n = 19)浓度的平均变异(CVtotal = 8.8%;范围4.7% - 25.3%)低于标本库(CVtotal = 24.6%;范围9.0% - 108.3%)。当用于IEM筛查时,RM归一化最大限度地减少了不必要的批次间变异,并能够正确区分相隔1个月分析的30例PKU患者和146例非PKU对照。

结论

我们的RM最大限度地减少了非靶向代谢组学中的批次间差异,并在一组PKU患者中证明了其在常规IEM筛查中的潜力。它为临床实验室非靶向代谢组学的数据归一化提供了一种实用且可持续的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验