Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA.
Sci Adv. 2024 Oct 4;10(40):eado5560. doi: 10.1126/sciadv.ado5560.
A broad spectrum of electromagnetic waves has been explored for wireless neuromodulation. Transcranial magnetic stimulation, with long wavelengths, cannot provide submillimeter spatial resolution. Visible light, with its short wavelengths, suffers from strong scattering in the deep tissue. Microwaves have centimeter-scale penetration depth and have been shown to reversibly inhibit neuronal activity. Yet, microwaves alone do not provide sufficient spatial precision to modulate target neurons without affecting surrounding tissues. Here, we report a split-ring resonator (SRR) that generates an enhanced microwave field at its gap with submillimeter spatial precision. With the SRR, microwaves at dosages below the safe exposure limit are shown to inhibit the firing of neurons within 1 mm of the SRR gap site. The microwave SRR reduced seizure activity at a low dose in both in vitro and in vivo models of epilepsy. This microwave dosage is confirmed to be biosafe via histological and biochemical assessment of brain tissue.
已经探索了广泛的电磁波用于无线神经调节。长波长的经颅磁刺激不能提供亚毫米级的空间分辨率。短波长的可见光在深部组织中会强烈散射。微波具有厘米级的穿透深度,已被证明可以可逆地抑制神经元活动。然而,微波本身并不能提供足够的空间精度来调节目标神经元而不影响周围组织。在这里,我们报告了一种分裂环谐振器 (SRR),它在其间隙处产生具有亚毫米级空间精度的增强微波场。利用 SRR,在 SRR 间隙处 1 毫米范围内的神经元的发射可以被低于安全暴露限值的微波剂量抑制。在体外和体内癫痫模型中,微波 SRR 在低剂量下降低了癫痫发作活动。通过对脑组织的组织学和生物化学评估,确认这种微波剂量是生物安全的。