Schienbein Philipp, Blumberger Jochen
Department of Physics and Astronomy and Thomas Young Centre, University College London, London, WC1E 6BT, United Kingdom.
Present address, Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, Bochum, 44780, Germany.
Chemphyschem. 2025 Jan 2;26(1):e202400490. doi: 10.1002/cphc.202400490. Epub 2024 Nov 19.
The protonation state of molecules and surfaces is pivotal in various disciplines, including (electro-)catalysis, geochemistry, biochemistry, and pharmaceutics. Accurately and efficiently determining acidity constants is critical yet challenging, particularly when explicitly considering the electronic structure, thermal fluctuations, anharmonic vibrations, and solvation effects. In this research, we employ thermodynamic integration accelerated by committee Neural Network potentials, training a single machine learning model that accurately describes the relevant protonated, deprotonated, and intermediate states. We investigate two deprotonation reactions at the BiVO (010)-water interface, a promising candidate for efficient photocatalytic water splitting. Our results illustrate the convergence of the required ensemble averages over simulation time and of the final acidity constant as a function of the Kirkwood coupling parameter. We demonstrate that simulation times on the order of nanoseconds are required for statistical convergence. This time scale is currently unachievable with explicit ab-initio molecular dynamics simulations at the hybrid DFT level of theory. In contrast, our machine learning workflow only requires a few hundred DFT single point calculations for training and testing. Exploiting the extended time scales accessible, we furthermore asses the effect of commonly applied bias potentials. Thus, our study significantly advances calculating free energy differences with ab-initio accuracy.
分子和表面的质子化状态在包括(电)催化、地球化学、生物化学和制药学等多个学科中都至关重要。准确且高效地确定酸度常数至关重要但也具有挑战性,尤其是在明确考虑电子结构、热涨落、非谐振动和溶剂化效应时。在本研究中,我们采用由委员会神经网络势加速的热力学积分,训练一个能准确描述相关质子化、去质子化和中间态的单一机器学习模型。我们研究了BiVO(010)-水界面处的两个去质子化反应,该界面是高效光催化水分解的一个有前景的候选体系。我们的结果说明了所需系综平均值在模拟时间上的收敛情况以及最终酸度常数作为柯克伍德耦合参数的函数关系。我们证明统计收敛需要纳秒量级的模拟时间。在混合密度泛函理论水平下,目前通过显式的从头算分子动力学模拟无法达到这个时间尺度。相比之下,我们的机器学习工作流程仅需要几百次密度泛函理论单点计算用于训练和测试。利用可获得的更长时间尺度,我们还评估了常用偏置势的影响。因此,我们的研究在以从头算精度计算自由能差方面取得了显著进展。