Wang Liqiang, Yuan Xiaoyu, Cai Qianyu, Chen Yutong, Jia Zhi, Mai Qiongmei, Liu Jie, Liu Yanan
Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China; College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China.
College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China.
Colloids Surf B Biointerfaces. 2025 Jan;245:114244. doi: 10.1016/j.colsurfb.2024.114244. Epub 2024 Sep 27.
Mitochondrial dysfunction in microglia has been implicated as a key pathogenesis of most neurodegenerative diseases including Alzheimer's disease (AD). Abnormal production of reactive oxygen species (ROS) and neuroinflammation caused by mitochondrial oxidative stress are important factors leading to neuronal death in AD. Herein, a "dual brake" strategy to synergistically halt mitochondrial dysfunction and neuroinflammation targeting mitochondria in microglia is proposed. To achieve this goal, (3-carboxypropyl) triphenyl-phosphonium bromide (TPP)-modified CuSe nanozymes (CuSe-TPP NPs) with dual enzyme-like activities was designed. CuSe-TPP NPs with superoxide dismutase-mimetic (SOD) and catalase-mimetic (CAT) activities can effectively scavenge ROS in the mitochondria of microglia and relieve mitochondrial oxidative stress. In vivo studies demonstrated that CuSe-TPP NPs can alleviate oxidative stress and promote neuroprotection in the hippocampus of AD model mice. In addition, CuSe-TPP NPs can regulate the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, promote Aβ phagocytosis and reshape the AD inflammatory microenvironment, thus effectively attenuating AD neuropathology and rescuing cognitive deficits in AD model mice. Taken together, this strategy preventing mitochondrial damage and remodeling the inflammatory microenvironment will provide a new perspective for AD therapy.
小胶质细胞中的线粒体功能障碍被认为是包括阿尔茨海默病(AD)在内的大多数神经退行性疾病的关键发病机制。线粒体氧化应激引起的活性氧(ROS)异常产生和神经炎症是导致AD中神经元死亡的重要因素。在此,提出了一种“双刹车”策略,以协同阻止小胶质细胞中线粒体功能障碍和针对线粒体的神经炎症。为实现这一目标,设计了具有双酶样活性的(3-羧丙基)三苯基溴化鏻(TPP)修饰的硒化铜纳米酶(CuSe-TPP NPs)。具有超氧化物歧化酶模拟(SOD)和过氧化氢酶模拟(CAT)活性的CuSe-TPP NPs可以有效清除小胶质细胞线粒体中的ROS,减轻线粒体氧化应激。体内研究表明,CuSe-TPP NPs可以减轻AD模型小鼠海马体中的氧化应激并促进神经保护。此外,CuSe-TPP NPs可以调节小胶质细胞从促炎M1表型向抗炎M2表型的极化,促进Aβ吞噬作用并重塑AD炎症微环境,从而有效减轻AD神经病理学并挽救AD模型小鼠的认知缺陷。综上所述,这种预防线粒体损伤和重塑炎症微环境的策略将为AD治疗提供新的视角。