School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Sci Total Environ. 2024 Dec 1;954:176682. doi: 10.1016/j.scitotenv.2024.176682. Epub 2024 Oct 2.
Molecular weight (MW) of dissolved organic matter (DOM) governs its redox capacity, playing pivotal roles in methanogen-bacteria symbiosis-driven CH production. However, the effect of redox capacity of DOM ranked by MW on these symbiotic associations during anaerobic digestion have never been investigated. The electron-donating (EDC) and -accepting capacity (EAC) of DOM with different MW were quantified, elucidating their impacts on bacteria-methanogen symbiosis-driven CH production. By contrast, DOM with 7000 > MW > 14,000 Da constituted the primary contribution to EAC, with an average contribution of 44.63 %. DOM with MW > 14,000 Da emerged as the predominant contributor to EDC, with an average contribution of 49.10 %. Random forest showed that EAC/EDC of DOM ranked by MW was the important factors for methanogenesis by driving shifts in microbial symbiotic relationships. 46 genera (relative abundance of 69.55 %) of microorganisms exhibited robust associations with EAC/EDC. EDC of DOM with 3500 < MW < 7000 Da exerted positive effect on CH by modulating the corporation of Caldicoprobacter, norank_o__TSCOR001-H18, norank_o__MBA03 and Methanobrevibacter. EDC of DOM (7000 < MW < 14,000 Da) promotes CH production by regulating cooperation of Corynebacterium, Pseudomonas and Methanosarcina, Methanothermus. EDC of DOM (MW > 14,000 Da) enhances CH production by modulating cooperation of Ureibacillus, Treponema and methanomassiliicoccus, methanogenium. EAC of DOMs were negatively correlated with CH. This study broadens our knowledge on the intricate process of methanogenesis and holds significant importance in developing a microbial symbiosis regulation strategy based on electron transfer system.
DOM 的分子量 (MW) 控制其氧化还原能力,在产甲烷菌-细菌共生驱动 CH 产生中起着关键作用。然而,MW 分级的 DOM 的氧化还原能力对厌氧消化中产甲烷菌-细菌共生的影响尚未被研究过。本文量化了不同 MW 的 DOM 的电子供体 (EDC) 和受体 (EAC) 能力,阐明了它们对细菌-产甲烷菌共生驱动 CH 产生的影响。相比之下,MW 为 7000 > MW > 14000 Da 的 DOM 对 EAC 的贡献最大,平均贡献为 44.63%。MW 为 MW > 14000 Da 的 DOM 对 EDC 的贡献最大,平均贡献为 49.10%。随机森林表明,MW 分级的 DOM 的 EAC/EDC 是通过驱动微生物共生关系变化来影响产甲烷作用的重要因素。46 个属(相对丰度为 69.55%)的微生物与 EAC/EDC 存在显著相关性。MW 为 3500 < MW < 7000 Da 的 DOM 的 EDC 通过调节 Caldicoprobacter、norank_o__TSCOR001-H18、norank_o__MBA03 和 Methanobrevibacter 的共生关系对 CH 产生了积极影响。MW 为 7000 < MW < 14000 Da 的 DOM 的 EDC 通过调节 Corynebacterium、Pseudomonas 和 Methanosarcina、Methanothermus 的共生关系促进 CH 产生。MW 为 MW > 14000 Da 的 DOM 的 EDC 通过调节 Ureibacillus、Treponema 和 methanomassiliicoccus、methanogenium 的共生关系促进 CH 产生。DOM 的 EAC 与 CH 呈负相关。本研究拓宽了我们对产甲烷过程的认识,对于开发基于电子传递系统的微生物共生调控策略具有重要意义。