Suppr超能文献

通过组合转录因子基因组占用分析预测全基因组组织特异性增强子。

Predicting genome-wide tissue-specific enhancers via combinatorial transcription factor genomic occupancy analysis.

作者信息

Shireen Huma, Batool Fatima, Khatoon Hizran, Parveen Nazia, Sehar Noor Us, Hussain Irfan, Ali Shahid, Abbasi Amir Ali

机构信息

National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.

Centre for Regenerative Medicine and Stem Cells Research, Agha Khan University hospital, Karachi, Pakistan.

出版信息

FEBS Lett. 2025 Jan;599(1):100-119. doi: 10.1002/1873-3468.15030. Epub 2024 Oct 4.

Abstract

Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.

摘要

增强子是对转录调控至关重要的非编码顺式调控元件。增强子中的突变会破坏基因调控,导致疾病表型。由于缺乏固定的序列,识别增强子及其组织特异性活性具有挑战性。本研究提出了一种基于序列的计算模型,该模型使用组合转录因子(TF)基因组占据情况来预测组织特异性增强子。该模型在包括ENCODE和Vista增强子浏览器数据在内的各种数据集上进行训练,预测了人类基因组中25000个前脑特异性顺式调控模块(CRM)。使用生化特征、疾病相关单核苷酸多态性和体内斑马鱼分析进行的验证证实了其有效性。该模型有助于预测缺乏特征明确的染色质特征的增强子,补充了组织特异性增强子发现中的实验方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验