Suppr超能文献

受组织扩张影响的多层皮肤模型中新型网嵴形成的数值研究。

Numerical investigation of new rete ridge formation in a multi-layer model of skin subjected to tissue expansion.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, 47907, IN, USA.

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.

出版信息

J Biomech. 2024 Nov;176:112346. doi: 10.1016/j.jbiomech.2024.112346. Epub 2024 Sep 27.

Abstract

The skin is a multilayered organ with microstructural and antomical heterogeneities that contribute to its unique mechanophysiology. Between the epidermis layer at the top and the dermis layer below, the basal keratinocytes form an interface with sinusoidal-like geometry termed rete ridges. In previous computational work we showed that the rete ridges contribute to lower delamination risk by increasing surface area and reducing the stress jump across the interface. Experimentally, we and others have shown that upon repeated tissue expansion and growth, physiological rete ridge frequency is preserved. Here we implement a 2D multilayered skin model where each layer is able to grow in response to applied loading toward recovering the layer-specific homeostatic stretch. Our simulations support the hypothesis that mechanics of growing tissue can explain secondary buckling and new rete ridge formation in tissue expansion. The process is robust with respect to parameters such as homeostatic stretch, layer thicknesses, and shear moduli of the different layers. Thicker epidermis suppresses higher frequency features, and so does a stiffer epidermis with respect to the basal layer. Interestingly, new rete ridge valleys are formed at locations that were originally peaks of the sine wave, whereas original valleys remain valleys. This pattern might have a connection to the localization of stem cell and transient amplifying cells in the epidermis. This study does not discard the role of cell-cell signaling dynamics, but rather emphasizes the possibility of achieving robust geometric patterns with simple rules of growing tissue, even in the absence of complex regulatory networks.

摘要

皮肤是一种具有微观结构和解剖异质性的多层器官,这使其具有独特的机械生理学特性。在上层的表皮层和下层的真皮层之间,基底角质形成细胞形成与正弦波状几何形状类似的界面,称为真皮乳头。在之前的计算工作中,我们表明真皮乳头通过增加表面积和减少界面处的应力跳跃,有助于降低分层风险。实验中,我们和其他人已经表明,在反复的组织扩张和生长过程中,生理真皮乳头的频率得以保持。在这里,我们实现了一个 2D 多层皮肤模型,其中每个层都能够响应施加的载荷进行生长,以恢复特定层的稳态拉伸。我们的模拟支持这样的假设,即生长组织的力学可以解释组织扩张中的二级屈曲和新真皮乳头的形成。该过程对稳态拉伸、层厚度和不同层的剪切模量等参数具有鲁棒性。较厚的表皮会抑制更高频率的特征,而与基底层相比,较硬的表皮也会抑制更高频率的特征。有趣的是,新的真皮乳头山谷是在正弦波的原始波峰位置形成的,而原始山谷仍然是山谷。这种模式可能与表皮中的干细胞和暂态扩增细胞的定位有关。这项研究并没有排除细胞-细胞信号动态的作用,而是强调了即使在没有复杂调控网络的情况下,通过组织生长的简单规则也有可能实现稳健的几何模式。

相似文献

2
The role of interface geometry and appendages on the mesoscale mechanics of the skin.界面几何形状和附属物在皮肤细观力学中的作用。
Biomech Model Mechanobiol. 2024 Apr;23(2):553-568. doi: 10.1007/s10237-023-01791-6. Epub 2023 Dec 21.
4
Physical forces make rete ridges in oral mucosa.物理力在口腔黏膜上形成皱襞。
Med Hypotheses. 2013 Nov;81(5):883-6. doi: 10.1016/j.mehy.2013.07.005. Epub 2013 Aug 8.

本文引用的文献

1
The role of interface geometry and appendages on the mesoscale mechanics of the skin.界面几何形状和附属物在皮肤细观力学中的作用。
Biomech Model Mechanobiol. 2024 Apr;23(2):553-568. doi: 10.1007/s10237-023-01791-6. Epub 2023 Dec 21.
2
Rete ridges: Morphogenesis, function, regulation, and reconstruction.rete嵴:形态发生、功能、调控及重建。
Acta Biomater. 2023 Jan 1;155:19-34. doi: 10.1016/j.actbio.2022.11.031. Epub 2022 Nov 24.
5
Turing pattern design principles and their robustness.图灵模式设计原则及其稳健性。
Philos Trans A Math Phys Eng Sci. 2021 Dec 27;379(2213):20200272. doi: 10.1098/rsta.2020.0272. Epub 2021 Nov 8.
8
Numerical investigation of biomechanically coupled growth in cortical folding.皮质脑回形成的生物力学耦联生长的数值研究。
Biomech Model Mechanobiol. 2021 Apr;20(2):555-567. doi: 10.1007/s10237-020-01400-w. Epub 2020 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验