Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
Sci Total Environ. 2024 Dec 1;954:176643. doi: 10.1016/j.scitotenv.2024.176643. Epub 2024 Oct 3.
Global warming has led to an increase in the frequency of cold extremes, causing significant economic losses in aquaculture, particularly in subtropical regions. Milkfish (Chanos chanos) holds significant importance in aquaculture within subtropical Asian regions. Despite milkfish's ability to tolerate varying salinity levels, frequent cold snaps associated with extreme weather events have caused substantial mortality. Understanding the molecular and cellular mechanisms underlying cold stress-induced cell death is crucial for developing effective strategies to mitigate such losses. Given the pivotal role of the liver in fish physiology, we established a primary milkfish hepatocyte culture demonstrating robust proliferation and expressing a unique marker leptin A. The molecular characterization of cold-treated hepatocytes at 18 °C showed that the mRNA levels of superoxide dismutase (sod1) and catalase (cat), responsible for neutralizing reactive oxygen species (ROS), were downregulated in freshwater (FW) conditions, while cat expression was upregulated in seawater (SW) conditions. This differential modulation of ROS signaling implies distinct responses in FW and SW, leading to higher ROS levels and increased cell death in FW condition compared to those in SW. Transcriptomic analysis of liver tissues from milkfish reared in FW or SW, with or without cold stress, revealed distinct gene expression patterns. Although cold stress affected a common set of genes in both FW and SW conditions, SW-specific cold responsive genes are associated with metabolic pathways while FW-specific genes were linked to cell proliferation pathways. Notably, gene set enrichment analysis highlighted the downregulation of cytochrome-related genes, a major source of ROS production, in response to cold stress in SW. In summary, our study unveils an insightful mechanism whereby the salinity of SW counteracts cold stress-induced ROS signaling, emphasizing the feasibility and practicality of preconditioning fish in SW as a preventive measure against cold stress-induced mortality.
全球变暖导致冷极端事件的频率增加,给水产养殖业造成了巨大的经济损失,特别是在亚热带地区。虱目鱼(Chanos chanos)在亚洲亚热带地区的水产养殖中具有重要地位。尽管虱目鱼能够耐受不同的盐度水平,但与极端天气事件相关的频繁寒潮导致了大量死亡。了解冷应激诱导细胞死亡的分子和细胞机制对于开发减轻这种损失的有效策略至关重要。鉴于肝脏在鱼类生理学中的关键作用,我们建立了一个原代虱目鱼肝细胞培养体系,该体系表现出良好的增殖能力,并表达了独特的标志物瘦蛋白 A。在 18°C 下对冷处理的肝细胞进行分子特征分析表明,超氧化物歧化酶(sod1)和过氧化氢酶(cat)的 mRNA 水平在淡水(FW)条件下下调,而在海水(SW)条件下 cat 的表达上调。这种 ROS 信号的差异调节表明 FW 和 SW 之间存在不同的反应,导致 FW 条件下的 ROS 水平升高和细胞死亡增加,与 SW 条件相比。对在 FW 或 SW 中饲养的虱目鱼的肝脏组织进行转录组分析,无论是否受到冷应激,都揭示了不同的基因表达模式。尽管冷应激在 FW 和 SW 条件下都影响了一组共同的基因,但 SW 特异性的冷响应基因与代谢途径相关,而 FW 特异性的基因与细胞增殖途径相关。值得注意的是,基因集富集分析强调了冷应激在 SW 中下调与细胞色素相关的基因,这些基因是 ROS 产生的主要来源。总之,我们的研究揭示了一个有见地的机制,即 SW 的盐度抵消了冷应激诱导的 ROS 信号,强调了在 SW 中对鱼类进行预处理作为预防冷应激诱导死亡率的可行性和实用性。