Suppr超能文献

用于多中心研究中静息态 EEG 特征协调的 Combat 模型。

ComBat models for harmonization of resting-state EEG features in multisite studies.

机构信息

Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Faculty of Health Sciences, University of Stavanger, Stavanger, Norway; Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia; Grupo Neuropsicología y Conducta, Universidad de Antioquia. Medellín, Colombia; Semillero de Investigación NeuroCo, Universidad de Antioquia, Medellín, Colombia.

Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Doctoral School Biomedical Sciences, KU Leuven, Leuven, Belgium; Grupo de Investigación en Estadística Aplicada - INFERIR, Universidad del Valle, Cali, Colombia; Prevención y Control de la Enfermedad Crónica - PRECEC, Universidad del Valle, Colombia.

出版信息

Clin Neurophysiol. 2024 Nov;167:241-253. doi: 10.1016/j.clinph.2024.09.019. Epub 2024 Sep 24.

Abstract

OBJECTIVE

Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults.

METHODS

RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects.

RESULTS

Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features' dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size.

CONCLUSIONS

ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features.

SIGNIFICANCE

This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.

摘要

目的

汇集多地点静息态脑电图(rsEEG)数据集可能会因批次效应(即与扫描仪/样本特征相关的跨站点 rsEEG 差异)而产生偏差。ComBat 模型是为微阵列表达而引入的,并已适应神经影像学,可以在保留生物协变量可变性的同时控制批次效应。我们旨在评估四种 ComBat 协调方法在来自五个独立年轻和老年 rsEEG 数据集的混合样本中的应用。

方法

rsEEG 信号(n=374)被自动预处理。在传感器空间中提取振荡和非周期性 rsEEG 特征。使用神经 Combat(神经影像学中使用的标准 Combat)、神经 Harmonize(对协变量进行非线性调整的变体)、OPNested-GMM(基于高斯混合模型拟合双峰特征分布的变体)和 HarmonizR(基于重采样处理缺失特征值的变体)对特征进行协调。在协调批次效应之前和之后,探索 rsEEG 特征与年龄之间的关系。

结果

在 rsEEG 特征中发现了批次效应。所有 Combat 方法均降低了批次效应和特征的分散性;HarmonizR 和 OPNested-GMM Combat 取得了最佳效果。协调后的 Beta 功率、个体 Alpha 峰频率、非周期性指数和后电极的偏移量与年龄呈显著相关。所有 Combat 模型都保持了观察到的关系的方向,同时增加了效应大小。

结论

Combat 模型,特别是 HarmonizR 和 OPNested-GMM Combat,有效地控制了 rsEEG 光谱特征中的批次效应。

意义

该工作流程可用于多地点研究,以协调传感器空间 rsEEG 光谱特征中的批次效应,同时保留生物学关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验