Suppr超能文献

通过螯合离子交换与配体浸渍树脂相结合从酸性矿井水中选择性分离轻、重稀土元素。

Selective separation of light and heavy rare earth elements from acidic mine waters by integration of chelating ion exchange and ligand impregnated resin.

作者信息

Roa Alexandra, López Julio, Cortina José Luis

机构信息

Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.

Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETaqua, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain.

出版信息

Sci Total Environ. 2024 Dec 1;954:176700. doi: 10.1016/j.scitotenv.2024.176700. Epub 2024 Oct 5.

Abstract

This study addresses the potential of sourcing Critical Raw Materials (CRMs) using Acidic Mine Waters (AMWs) as a secondary resource. AMWs, often viewed as waste, contain valuable metals like zinc and copper, as well as critical metals like magnesium and cobalt. Moreover, recent studies also reported the presence of Rare Earth Elements (REEs) at concentrations (mg/L) that make their extraction both technically and economically viable. The research focuses on a circular process to recover these metals from AMWs, specifically from the Aznalcóllar open-pit mine, which contains 216 mg/L of Al, 47 mg/L of Fe, 547 mg/L of Zn, and 18.56 mg/L of REEs. The proposed method involves pre-treating the AMW to remove Fe and Al, achieving removals of over 99.9 % and 90 %, respectively, at pH 4.5. Following this, transition metals like Zn, Cd, and Cu were removed as sulphides with a removal efficiency exceeding 99 %. This pre-treatment step reduced the concentration of competing metals in the ion-exchange process, thereby enhancing the recovery and purity of REEs. To separate heavy and light REEs, two types of resins in series were used: an impregnated resin (TP272) and a chelating resin (S930), which can be regenerated using sulphuric acid (HSO). The final recovery of REEs as oxalates was achieved using oxalic acid and ammonia at pH 1, with further optimization of the elution process to minimize ammonia consumption and undesired precipitation of other oxalates. Finally, REE oxalates with purities exceeding 90 % were obtained. This research demonstrates a sustainable method for efficiently recovering valuable REEs from AMWs, while also addressing environmental concerns related to hazardous sludge generation.

摘要

本研究探讨了利用酸性矿井水(AMW)作为二次资源来获取关键原材料(CRM)的潜力。AMW通常被视为废物,其中含有锌和铜等有价值的金属,以及镁和钴等关键金属。此外,最近的研究还报告了酸性矿井水中稀土元素(REE)的存在浓度(毫克/升),这使得其提取在技术和经济上都是可行的。该研究聚焦于从AMW中回收这些金属的循环工艺,特别是来自阿兹纳科拉尔露天矿的AMW,其中含有216毫克/升的铝、47毫克/升的铁、547毫克/升的锌和18.56毫克/升的稀土元素。所提出的方法包括对AMW进行预处理以去除铁和铝,在pH值为4.5时,铁和铝的去除率分别超过99.9%和90%。在此之后,锌、镉和铜等过渡金属以硫化物的形式被去除,去除效率超过99%。这一预处理步骤降低了离子交换过程中竞争性金属的浓度,从而提高了稀土元素的回收率和纯度。为了分离重稀土和轻稀土,串联使用了两种类型的树脂:一种浸渍树脂(TP272)和一种螯合树脂(S930),它们可以用硫酸(HSO)进行再生。在pH值为1时,使用草酸和氨最终实现了稀土元素草酸盐的回收,并进一步优化了洗脱过程,以尽量减少氨的消耗和其他草酸盐的不期望沉淀。最后,获得了纯度超过90%的稀土草酸盐。这项研究展示了一种可持续的方法,能够有效地从酸性矿井水中回收有价值的稀土元素,同时还解决了与危险污泥产生相关的环境问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验