Suppr超能文献

提高高温冲击法制备的用于固体氧化物电化学电池的LaSrCoFeO空气电极的电催化活性。

Boost Electrocatalytic Activity of LaSrCoFeO Air Electrode Prepared by High-Temperature Shock for Solid Oxide Electrochemical Cells.

作者信息

Yuan Jiazheng, Cheng Kun, Qi Huiying, Tu Baofeng, Liu Rui, Xiong Chunyan, Qiu Peng

机构信息

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

State Grid Henan DC Center, Zhengzhou 450000, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55343-55352. doi: 10.1021/acsami.4c10925. Epub 2024 Oct 6.

Abstract

High-temperature shock (HTS) is an emerging material synthesis technology with advantages, such as rapid processing, low energy consumption, and high controllability. This technology can prepare ultrafine nanoparticles with uniform particle size distribution and introduce additional oxygen vacancies, offering significant potential for the preparation of key materials for solid oxide electrochemical cells (SOCs). In this study, the LaSrCoFeO (LSCF) air electrode was successfully prepared using HTS technology. Compared to the conventional muffle furnace calcination, the HTS-prepared LSCF exhibits a larger specific surface area and a higher oxygen vacancy concentration, and it demonstrates significant improvements in performance. The oxygen ion conducting SOC (O-SOC) with the HTS-LSCF air electrode achieved a peak power density (PPD) of 960 mW cm and a current density of 0.38 A cm (at 1.3 V) at 700 °C. Meanwhile, the proton conducting SOC (P-SOC) with HTS-LSCF air electrode reached a PPD value of 1.34 W cm and a current density of 3.43 A cm (at 1.3 V) at 700 °C. Additionally, the P-SOC with HTS-LSCF air electrode showed no significant degradation during over 200 h of long-term testing, reflecting the excellent stability of HTS-LSCF. This work provides a fast, efficient, and economical approach for synthesizing high-performance, high-stability SOC air electrode materials.

摘要

高温冲击(HTS)是一种新兴的材料合成技术,具有诸如加工速度快、能耗低和可控性高等优点。该技术能够制备粒径分布均匀的超细微纳米颗粒,并引入额外的氧空位,为制备固体氧化物电化学电池(SOCs)的关键材料提供了巨大潜力。在本研究中,采用HTS技术成功制备了LaSrCoFeO(LSCF)空气电极。与传统马弗炉煅烧相比,HTS制备的LSCF具有更大的比表面积和更高的氧空位浓度,并且在性能上有显著提升。具有HTS-LSCF空气电极的氧离子传导SOC(O-SOC)在700℃时实现了960 mW/cm²的峰值功率密度(PPD)和0.38 A/cm²的电流密度(在1.3 V时)。同时,具有HTS-LSCF空气电极的质子传导SOC(P-SOC)在700℃时达到了1.34 W/cm²的PPD值和3.43 A/cm²的电流密度(在1.3 V时)。此外,具有HTS-LSCF空气电极的P-SOC在超过200小时的长期测试中没有明显降解,体现了HTS-LSCF优异的稳定性。这项工作为合成高性能、高稳定性的SOC空气电极材料提供了一种快速、高效且经济的方法。

相似文献

1
Boost Electrocatalytic Activity of LaSrCoFeO Air Electrode Prepared by High-Temperature Shock for Solid Oxide Electrochemical Cells.
ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55343-55352. doi: 10.1021/acsami.4c10925. Epub 2024 Oct 6.
6
Integrated Cr and S poisoning of a LaSrCoFeO (LSCF) cathode for solid oxide fuel cells.
RSC Adv. 2020 Dec 22;11(1):7-14. doi: 10.1039/d0ra09239h. eCollection 2020 Dec 21.
7
LaCrO-Coated LaSrCoFeO Core-Shell Structured Cathode with Enhanced Cr Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.
ACS Appl Mater Interfaces. 2020 Jul 1;12(26):29133-29142. doi: 10.1021/acsami.0c01962. Epub 2020 Jun 22.
10
Polarization-Induced Interface and Sr Segregation of in Situ Assembled LaSrCoFeO Electrodes on YO-ZrO Electrolyte of Solid Oxide Fuel Cells.
ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31729-31737. doi: 10.1021/acsami.6b11665. Epub 2016 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验