Yuan Jiazheng, Cheng Kun, Qi Huiying, Tu Baofeng, Liu Rui, Xiong Chunyan, Qiu Peng
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
State Grid Henan DC Center, Zhengzhou 450000, China.
ACS Appl Mater Interfaces. 2024 Oct 16;16(41):55343-55352. doi: 10.1021/acsami.4c10925. Epub 2024 Oct 6.
High-temperature shock (HTS) is an emerging material synthesis technology with advantages, such as rapid processing, low energy consumption, and high controllability. This technology can prepare ultrafine nanoparticles with uniform particle size distribution and introduce additional oxygen vacancies, offering significant potential for the preparation of key materials for solid oxide electrochemical cells (SOCs). In this study, the LaSrCoFeO (LSCF) air electrode was successfully prepared using HTS technology. Compared to the conventional muffle furnace calcination, the HTS-prepared LSCF exhibits a larger specific surface area and a higher oxygen vacancy concentration, and it demonstrates significant improvements in performance. The oxygen ion conducting SOC (O-SOC) with the HTS-LSCF air electrode achieved a peak power density (PPD) of 960 mW cm and a current density of 0.38 A cm (at 1.3 V) at 700 °C. Meanwhile, the proton conducting SOC (P-SOC) with HTS-LSCF air electrode reached a PPD value of 1.34 W cm and a current density of 3.43 A cm (at 1.3 V) at 700 °C. Additionally, the P-SOC with HTS-LSCF air electrode showed no significant degradation during over 200 h of long-term testing, reflecting the excellent stability of HTS-LSCF. This work provides a fast, efficient, and economical approach for synthesizing high-performance, high-stability SOC air electrode materials.
高温冲击(HTS)是一种新兴的材料合成技术,具有诸如加工速度快、能耗低和可控性高等优点。该技术能够制备粒径分布均匀的超细微纳米颗粒,并引入额外的氧空位,为制备固体氧化物电化学电池(SOCs)的关键材料提供了巨大潜力。在本研究中,采用HTS技术成功制备了LaSrCoFeO(LSCF)空气电极。与传统马弗炉煅烧相比,HTS制备的LSCF具有更大的比表面积和更高的氧空位浓度,并且在性能上有显著提升。具有HTS-LSCF空气电极的氧离子传导SOC(O-SOC)在700℃时实现了960 mW/cm²的峰值功率密度(PPD)和0.38 A/cm²的电流密度(在1.3 V时)。同时,具有HTS-LSCF空气电极的质子传导SOC(P-SOC)在700℃时达到了1.34 W/cm²的PPD值和3.43 A/cm²的电流密度(在1.3 V时)。此外,具有HTS-LSCF空气电极的P-SOC在超过200小时的长期测试中没有明显降解,体现了HTS-LSCF优异的稳定性。这项工作为合成高性能、高稳定性的SOC空气电极材料提供了一种快速、高效且经济的方法。