Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia.
Monarch Research Institute, Monarch Mental Health Group, Sydney, New South Wales, Australia.
Hum Brain Mapp. 2024 Oct;45(14):e70034. doi: 10.1002/hbm.70034.
Automated EEG pre-processing pipelines provide several key advantages over traditional manual data cleaning approaches; primarily, they are less time-intensive and remove potential experimenter error/bias. Automated pipelines also require fewer technical expertise as they remove the need for manual artefact identification. We recently developed the fully automated Reduction of Electroencephalographic Artefacts (RELAX) pipeline and demonstrated its performance in cleaning EEG data recorded from adult populations. Here, we introduce the RELAX-Jr pipeline, which was adapted from RELAX and designed specifically for pre-processing of data collected from children. RELAX-Jr implements multi-channel Wiener filtering (MWF) and/or wavelet-enhanced independent component analysis (wICA) combined with the adjusted-ADJUST automated independent component classification algorithm to identify and reduce all artefacts using algorithms adapted to optimally identify artefacts in EEG recordings taken from children. Using a dataset of resting-state EEG recordings (N = 136) from children spanning early-to-middle childhood (4-12 years), we assessed the cleaning performance of RELAX-Jr using a range of metrics including signal-to-error ratio, artefact-to-residue ratio, ability to reduce blink and muscle contamination, and differences in estimates of alpha power between eyes-open and eyes-closed recordings. We also compared the performance of RELAX-Jr against four publicly available automated cleaning pipelines. We demonstrate that RELAX-Jr provides strong cleaning performance across a range of metrics, supporting its use as an effective and fully automated cleaning pipeline for neurodevelopmental EEG data.
自动化 EEG 预处理流水线相对于传统的手动数据清理方法具有几个关键优势;主要是,它们的时间密集度更低,并且消除了潜在的实验者误差/偏差。自动化流水线还需要较少的技术专业知识,因为它们消除了对手动伪影识别的需求。我们最近开发了完全自动化的脑电图伪影减少(RELAX)流水线,并证明了其在清洁成人人群记录的 EEG 数据方面的性能。在这里,我们介绍了 RELAX-Jr 流水线,它是从 RELAX 改编而来的,专门为从儿童收集的数据预处理而设计。RELAX-Jr 实现了多通道 Wiener 滤波(MWF)和/或小波增强独立成分分析(wICA),结合经过调整的 ADJUST 自动化独立成分分类算法,使用专门针对儿童脑电图记录中伪影进行优化识别的算法来识别和减少所有伪影。使用来自儿童的静息态 EEG 记录(N=136)数据集,涵盖从早期到中期儿童期(4-12 岁),我们使用一系列指标评估了 RELAX-Jr 的清洁性能,包括信噪比、伪影残留比、减少眨眼和肌肉污染的能力,以及睁眼和闭眼记录之间的 alpha 功率估计的差异。我们还将 RELAX-Jr 的性能与四个公开可用的自动化清理流水线进行了比较。我们证明,RELAX-Jr 在一系列指标上提供了强大的清洁性能,支持将其用作神经发育 EEG 数据的有效且完全自动化的清洁流水线。