Suppr超能文献

阴离子交换膜氧分离器

Anion-Exchange Membrane Oxygen Separator.

作者信息

Faour Maisa, Yassin Karam, Dekel Dario R

机构信息

The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel.

出版信息

ACS Org Inorg Au. 2024 Aug 29;4(5):498-503. doi: 10.1021/acsorginorgau.4c00052. eCollection 2024 Oct 2.

Abstract

Anion-exchange membranes (AEMs), known for enabling the high conductivity of hydroxide anions through dense polymeric structures, are pivotal components in fuel cells, electrolyzers, and other important electrochemical systems. This paper unveils an unprecedented utilization of AEMs in an electrochemical oxygen separation process, a new technology able to generate enriched oxygen from an O/N mixture using a small voltage input. We demonstrate a first-of-its-kind AEM-based electrochemical device that operates under mild conditions, is free of liquid electrolytes or sweep gases, and produces oxygen of over 96% purity. Additionally, we develop and apply a one-dimensional time-dependent and isothermal model, which accurately captures the unique operational dynamics of our device, demonstrates good agreement with the experimental data, and allows us to explore the device's potential capabilities. This novel technology has far-reaching applications in many industrial processes, medical oxygen therapy, and other diverse fields while reducing operational complexity and environmental impact, thereby paving the way for sustainable on-site oxygen generation.

摘要

阴离子交换膜(AEMs)以其能够通过致密的聚合物结构实现氢氧根阴离子的高电导率而闻名,是燃料电池、电解槽和其他重要电化学系统的关键组件。本文揭示了AEMs在电化学氧分离过程中的前所未有的应用,这是一种能够利用小电压输入从O/N混合物中产生富氧的新技术。我们展示了一种基于AEM的电化学装置,该装置在温和条件下运行,无需液体电解质或吹扫气体,可产生纯度超过96%的氧气。此外,我们开发并应用了一维时间相关等温模型,该模型准确地捕捉了我们装置独特的运行动态,与实验数据显示出良好的一致性,并使我们能够探索该装置的潜在能力。这项新技术在许多工业过程、医用氧疗和其他不同领域具有深远的应用,同时降低了操作复杂性和环境影响,从而为可持续的现场制氧铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6059/11450738/1f8e5b74e8e5/gg4c00052_0001.jpg

相似文献

1
Anion-Exchange Membrane Oxygen Separator.
ACS Org Inorg Au. 2024 Aug 29;4(5):498-503. doi: 10.1021/acsorginorgau.4c00052. eCollection 2024 Oct 2.
2
Computational Approaches to Alkaline Anion-Exchange Membranes for Fuel Cell Applications.
Membranes (Basel). 2022 Oct 27;12(11):1051. doi: 10.3390/membranes12111051.
3
Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology.
Acc Chem Res. 2019 Sep 17;52(9):2745-2755. doi: 10.1021/acs.accounts.9b00355. Epub 2019 Aug 27.
6
Machine Learning-Aided Design of Highly Conductive Anion Exchange Membranes for Fuel Cells and Water Electrolyzers.
Adv Mater. 2024 Sep;36(36):e2404981. doi: 10.1002/adma.202404981. Epub 2024 Jul 29.
7
Isoindolinium Groups as Stable Anion Conductors for Anion-Exchange Membrane Fuel Cells and Electrolyzers.
ACS Mater Au. 2022 Feb 23;2(3):367-373. doi: 10.1021/acsmaterialsau.2c00002. eCollection 2022 May 11.
8
Highly Water Resistant Anion Exchange Membrane for Fuel Cells.
Macromol Rapid Commun. 2015 Jul;36(14):1362-7. doi: 10.1002/marc.201500116. Epub 2015 May 12.
9
Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):38132-38143. doi: 10.1021/acsami.2c05872. Epub 2022 Aug 15.

本文引用的文献

1
Alkaline Stability of Anion-Exchange Membranes.
ACS Appl Energy Mater. 2023 Jan 9;6(2):1085-1092. doi: 10.1021/acsaem.2c03689. eCollection 2023 Jan 23.
2
Economical synthesis of oxygen to combat the COVID-19 pandemic.
Hyg Environ Health Adv. 2023 Jun;6:100048. doi: 10.1016/j.heha.2023.100048. Epub 2023 Feb 16.
4
Life cycle of medical oxygen from production to consumption.
J Family Med Prim Care. 2022 Apr;11(4):1231-1236. doi: 10.4103/jfmpc.jfmpc_956_21. Epub 2022 Mar 18.
5
What is Next in Anion-Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future.
ChemSusChem. 2022 Apr 22;15(8):e202200027. doi: 10.1002/cssc.202200027. Epub 2022 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验