Suppr超能文献

在线双层优化:在线交替梯度法的遗憾分析

Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods.

作者信息

Tarzanagh Davoud Ataee, Nazari Parvin, Hou Bojian, Shen Li, Balzano Laura

机构信息

University of Pennsylvania.

Amirkabir University of Technology.

出版信息

Proc Mach Learn Res. 2024 May;238:2854-2862.

Abstract

This paper introduces an setting in which a sequence of time-varying bilevel problems is revealed one after the other. We extend the known regret bounds for single-level online algorithms to the bilevel setting. Specifically, we provide new notions of , develop an online alternating time-averaged gradient method that is capable of leveraging smoothness, and give regret bounds in terms of the path-length of the inner and outer minimizer sequences.

摘要

本文介绍了一种场景,其中一系列时变双层问题相继出现。我们将单级在线算法的已知遗憾界扩展到双层场景。具体来说,我们提出了新的概念,开发了一种能够利用平滑性的在线交替时间平均梯度方法,并根据内层和外层最小化器序列的路径长度给出遗憾界。

相似文献

5
Test problem construction for single-objective bilevel optimization.单目标双层优化的测试问题构建。
Evol Comput. 2014 Fall;22(3):439-77. doi: 10.1162/EVCO_a_00116. Epub 2014 Apr 14.
6
Solving Bilevel Optimization Problems Using Kriging Approximations.使用克里金近似法求解双层优化问题。
IEEE Trans Cybern. 2022 Oct;52(10):10639-10654. doi: 10.1109/TCYB.2021.3061551. Epub 2022 Sep 19.
7
Proximal Online Gradient Is Optimum for Dynamic Regret: A General Lower Bound.
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7755-7764. doi: 10.1109/TNNLS.2021.3087579. Epub 2022 Nov 30.
8
10
Stochastic learning via optimizing the variational inequalities.通过优化变分不等式进行随机学习。
IEEE Trans Neural Netw Learn Syst. 2014 Oct;25(10):1769-78. doi: 10.1109/TNNLS.2013.2294741.

引用本文的文献

1
Fair Canonical Correlation Analysis.公平典型相关分析
Adv Neural Inf Process Syst. 2023 Dec;36:3675-3705.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验