Desai Devam A, Schmidt Stephan, Cristofoletti Rodrigo
Center of Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, United States.
Front Pharmacol. 2024 Sep 20;15:1454785. doi: 10.3389/fphar.2024.1454785. eCollection 2024.
In-vivo CRISPR Cas genome editing is a complex therapy involving lipid nanoparticle (LNP), messenger RNA (mRNA), and single guide RNA (sgRNA). This novel modality requires prior modeling to predict dose-exposure-response relationships due to limited information on sgRNA and mRNA biodistribution. This work presents a QSP model to characterize, predict, and translate the Pharmacokinetics/Pharmacodynamics (PK/PD) of CRISPR therapies from preclinical species (mouse, non-human primate (NHP)) to humans using two case studies: transthyretin amyloidosis and LDL-cholesterol reduction. PK/PD data were sourced from literature. The QSP model incorporates mechanisms post-IV injection: 1) LNP binding to opsonins in liver vasculature; 2) Phagocytosis into the Mononuclear Phagocytotic System (MPS); 3) LNP internalization via endocytosis and LDL receptor-mediated endocytosis in the liver; 4) Cellular internalization and transgene product release; 5) mRNA and sgRNA disposition via exocytosis and clathrin-mediated endocytosis; 6) Renal elimination of LNP and sgRNA; 7) Exonuclease degradation of sgRNA and mRNA; 8) mRNA translation into Cas9 and RNP complex formation for gene editing. Monte-Carlo simulations were performed for 1000 subjects and showed a reduction in serum TTR. The rate of internalization in interstitial layer was 0.039 1/h in NHP and 0.007 1/h in humans. The rate of exocytosis was 6.84 1/h in mouse, 2690 1/h in NHP, and 775 1/h in humans. Pharmacodynamics were modeled using an indirect response model, estimating first-order degradation rate (0.493 1/d) and TTR reduction parameters in NHP. The QSP model effectively characterized biodistribution and dose-exposure relationships, aiding the development of these novel therapies. The utility of platform QSP model can be paramount in facilitating the discovery and development of these novel agents.
体内CRISPR Cas基因组编辑是一种复杂的治疗方法,涉及脂质纳米颗粒(LNP)、信使核糖核酸(mRNA)和单向导RNA(sgRNA)。由于关于sgRNA和mRNA生物分布的信息有限,这种新方法需要事先建模以预测剂量-暴露-反应关系。这项工作提出了一个定量系统药理学(QSP)模型,通过两个案例研究(转甲状腺素蛋白淀粉样变性和低密度脂蛋白胆固醇降低),来表征、预测和转化从临床前物种(小鼠、非人类灵长类动物(NHP))到人类的CRISPR治疗的药代动力学/药效学(PK/PD)。PK/PD数据来自文献。该QSP模型纳入了静脉注射后的机制:1)LNP与肝血管中的调理素结合;2)被单核吞噬细胞系统(MPS)吞噬;3)LNP通过内吞作用和肝脏中低密度脂蛋白受体介导的内吞作用内化;4)细胞内化和转基因产物释放;5)mRNA和sgRNA通过胞吐作用和网格蛋白介导的内吞作用处置;6)LNP和sgRNA经肾脏清除;7)sgRNA和mRNA被核酸外切酶降解;8)mRNA翻译成Cas9并形成用于基因编辑的核糖核蛋白复合物。对1000名受试者进行了蒙特卡洛模拟,结果显示血清转甲状腺素蛋白有所降低。在NHP中,间质层的内化速率为0.039 1/h,在人类中为0.007 1/h。胞吐速率在小鼠中为6.84 1/h,在NHP中为2690 1/h,在人类中为775 1/h。药效学使用间接反应模型进行建模,估计NHP中的一级降解速率(0.493 1/d)和转甲状腺素蛋白降低参数。该QSP模型有效地表征了生物分布和剂量-暴露关系,有助于这些新疗法的开发。平台QSP模型的效用对于促进这些新型药物的发现和开发可能至关重要。