Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
Clinical Pharmacology & Pharmacometrics, Janssen Research and Development, Spring House, PA, USA.
J Pharm Sci. 2024 Jan;113(1):176-190. doi: 10.1016/j.xphs.2023.10.026. Epub 2023 Oct 21.
Triantennary N-acetyl-D galactosamine (GalNAc)-conjugated small interfering RNA (siRNA) have majorly advanced the development of RNA-based therapeutics. Chemically stabilized GalNAc-siRNAs exhibit extensive albeit capacity-limited (nonlinear) distribution into hepatocytes with additional complexities in intracellular liver disposition and pharmacology. A mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) model of GalNAc-siRNA was developed to i) quantitate ASGPR-mediated disposition and downstream RNA-induced silencing complex (RISC)-dependent pharmacology following intravenous (IV) and subcutaneous (SC) dosing, ii) assess the kinetics of formed active metabolite, iii) leverage, as an example, published experimental data for givosiran, and iv) demonstrate PK translation across two preclinical species (rat and monkey) with subsequent prediction of human plasma PK. The structural model is based on competition between parent and formed active metabolite for occupancy and uptake via ASGPR into hepatocytes, intracellular sequestration and degradation, and downstream engagement of RNA-induced silencing complex (RISC) governing target mRNA degradation. The model jointly and accurately captured available concentration-time profiles of givosiran and/or AS(N-1)3' givosiran in rat and/or monkey plasma, liver, and/or kidney following givosiran administered both IV and SC. RISC-dependent gene silencing of ALAS1 mRNA was well-characterized. The model estimated an in vivo affinity (K) value of 27.7 nM for GalNAc-ASGPR and weight-based allometric exponents of -0.27 and -0.24 for SC absorption and intracellular (endolysosomal) degradation rate constants. The model well-predicted reported givosiran plasma PK profiles in humans. PK simulations revealed net-shifts in liver-to-kidney distribution ratios with increasing IV and SC dose. Importantly, decreases in the relative liver uptake efficiency were demonstrated following IV and, to a lesser extent, following SC dosing explained by differential ASGPR occupancy profiles over time.
三触角 N-乙酰-D-半乳糖胺(GalNAc)缀合的小干扰 RNA(siRNA)极大地推动了基于 RNA 的治疗药物的发展。化学稳定的 GalNAc-siRNA 表现出广泛的但能力有限的(非线性)分布到肝细胞中,并且在细胞内肝脏处置和药理学方面存在更多的复杂性。开发了一种基于机制的 GalNAc-siRNA 的药代动力学-药效学(PK-PD)模型,以 i)定量评估 ASGPR 介导的处置和静脉内(IV)和皮下(SC)给药后 RNA 诱导的沉默复合物(RISC)依赖性药理学,ii)评估形成的活性代谢物的动力学,iii)利用已发表的吉维森兰实验数据作为示例,以及 iv)展示两种临床前物种(大鼠和猴子)之间的 PK 转化,随后预测人类血浆 PK。结构模型基于母体和形成的活性代谢物之间的竞争,通过 ASGPR 进入肝细胞、细胞内隔离和降解以及下游 RNA 诱导的沉默复合物(RISC)的参与来控制靶 mRNA 的降解。该模型联合并准确地捕获了吉维森兰在大鼠和/或猴子静脉内和/或皮下给药后血浆、肝脏和/或肾脏中的可用浓度-时间曲线,以及 AS(N-1)3'吉维森兰。RISC 依赖性 ALAS1 mRNA 基因沉默得到了很好的描述。该模型估计了 GalNAc-ASGPR 的体内亲和力(K)值为 27.7 nM,SC 吸收和细胞内(内溶酶体)降解速率常数的体重比例指数分别为-0.27 和-0.24。该模型很好地预测了报告的吉维森兰在人体内的 PK 曲线。PK 模拟显示,随着 IV 和 SC 剂量的增加,肝-肾分布比发生净转移。重要的是,与 IV 相比,SC 给药后观察到相对肝摄取效率降低,这可以通过随时间推移 ASGPR 占有率的差异来解释。