Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS Pilani), Pilani Campus, Pilani, Rajasthan 333031, India.
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar, Gujurat 382355, India.
Mol Pharm. 2024 Nov 4;21(11):5392-5412. doi: 10.1021/acs.molpharmaceut.4c00485. Epub 2024 Oct 7.
Fungal infection poses a major global threat to public health because of its wide prevalence, severe mortality rate, challenges involved in diagnosis and treatment, and the emergence of drug-resistant fungal strains. Millions of people are getting affected by fungal infection, and around 3.8 million people face death per year due to fungal infection, as per the latest report. The polyene antibiotic AmB has an extensive record of use as a therapeutic moiety against systemic fungal infection and leishmaniasis since 1960. AmB has broad-spectrum fungistatic and fungicidal activity. AmB exerts its therapeutic activity at the cellular level by binding to fungal sterol and forming hydrophilic pores, releasing essential cellular components and ions into the extracellular fluid, leading to cell death. Despite using AmB as an antifungal and antileishmanial at a broad scale, its clinical use is limited due to drug-induced nephrotoxicity resulting from binding the aggregated form of the drug to mammalian sterol. To mitigate AmB-induced toxicity and to get better anti-fungal therapeutic outcomes, researchers have developed nanoformulations, self-assembled formulations, prodrugs, cholesterol- and albumin-based AmB formulations, AmB-mAb combination therapy, and AmB cochleates. These formulations have helped to reduce toxicity to a certain extent by controlling the aggregation state of AmB, providing sustained drug release, and altering the physicochemical and pharmacokinetic parameters of AmB. Although the preclinical outcome of AmB formulations is quite satisfactory, its parallel result at the clinical level is insignificant. However, the safety and efficacy of AmB therapy can be improved at the clinical stage by continuous investigation and collaboration among researchers, clinicians, and pharmaceutical companies.
真菌感染因其广泛流行、高死亡率、诊断和治疗困难以及抗真菌药物耐药菌株的出现,对全球公共健康构成重大威胁。根据最新报告,数以百万计的人受到真菌感染的影响,每年约有 380 万人因真菌感染而死亡。多烯类抗生素 AmB 自 1960 年以来作为治疗系统性真菌感染和利什曼病的治疗部分已有广泛的应用记录。AmB 具有广谱的抑菌和杀菌活性。AmB 通过与真菌甾醇结合并形成亲水性孔,将必需的细胞成分和离子释放到细胞外液中,从而在细胞水平发挥其治疗活性,导致细胞死亡。尽管 AmB 作为一种抗真菌和抗利什曼原虫药物被广泛应用,但由于药物与哺乳动物甾醇结合形成聚集形式导致的药物诱导的肾毒性,其临床应用受到限制。为了减轻 AmB 诱导的毒性并获得更好的抗真菌治疗效果,研究人员已经开发了纳米制剂、自组装制剂、前药、基于胆固醇和白蛋白的 AmB 制剂、AmB-mAb 联合治疗和 AmB 耳蜗制剂。这些制剂通过控制 AmB 的聚集状态、提供持续的药物释放以及改变 AmB 的物理化学和药代动力学参数,在一定程度上帮助降低了毒性。尽管 AmB 制剂的临床前结果相当令人满意,但在临床水平上的平行结果却并不显著。然而,通过研究人员、临床医生和制药公司之间的持续合作和研究,可以提高 AmB 治疗的安全性和疗效。