Center for Orthopaedic Science and Translational Medicine, Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R China.
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 201102, P. R. China.
Adv Sci (Weinh). 2024 Nov;11(44):e2407251. doi: 10.1002/advs.202407251. Epub 2024 Oct 7.
The treatment of infected bone defects (IBDs) needs simultaneous elimination of infection and acceleration of bone regeneration. One mechanism that hinders the regeneration of IBDs is the iron competition between pathogens and host cells, leading to an iron deficient microenvironment that impairs the innate immune responses. In this work, an in situ modification strategy is proposed for printing iron-active multifunctional scaffolds with iron homeostasis regulation ability for treating IBDs. As a proof-of-concept, ultralong hydroxyapatite (HA) nanowires are modified through in situ growth of a layer of iron gallate (FeGA) followed by incorporation in the poly(lactic-co-glycolic acid) (PLGA) matrix to print biomimetic PLGA based composite scaffolds containing FeGA modified HA nanowires (FeGA-HA@PLGA). The photothermal effect of FeGA endows the scaffolds with excellent antibacterial activity. The released iron ions from the FeGA-HA@PLGA help restore the iron homeostasis microenvironment, thereby promoting anti-inflammatory, angiogenesis and osteogenic differentiation. The transcriptomic analysis shows that FeGA-HA@PLGA scaffolds exert anti-inflammatory and pro-osteogenic differentiation by activating NF-κB, MAPK and PI3K-AKT signaling pathways. Animal experiments confirm the excellent bone repair performance of FeGA-HA@PLGA scaffolds for IBDs, suggesting the promising prospect of iron homeostasis regulation therapy in future clinical applications.
感染性骨缺损(IBD)的治疗需要同时消除感染并加速骨再生。阻碍 IBD 再生的一个机制是病原体和宿主细胞之间的铁竞争,导致铁缺乏的微环境,从而损害先天免疫反应。在这项工作中,提出了一种原位修饰策略,用于打印具有铁稳态调节能力的铁活性多功能支架,以治疗 IBD。作为概念验证,通过原位生长一层没食子酸铁(FeGA)对超长羟基磷灰石(HA)纳米线进行修饰,然后将其掺入聚(乳酸-共-乙醇酸)(PLGA)基质中,以打印仿生 PLGA 基复合支架,其中包含 FeGA 修饰的 HA 纳米线(FeGA-HA@PLGA)。FeGA 的光热效应赋予支架优异的抗菌活性。从 FeGA-HA@PLGA 释放的铁离子有助于恢复铁稳态微环境,从而促进抗炎、血管生成和成骨分化。转录组分析表明,FeGA-HA@PLGA 支架通过激活 NF-κB、MAPK 和 PI3K-AKT 信号通路发挥抗炎和促成骨分化作用。动物实验证实了 FeGA-HA@PLGA 支架在 IBD 中出色的骨修复性能,表明铁稳态调节治疗在未来临床应用中的广阔前景。