Chen Tao, Huang Chenxi, Gadway Bryce, Covey Jacob P
Department of Physics, <a href="https://ror.org/047426m28">University of Illinois at Urbana-Champaign</a>, Urbana, Illinois 61801-3080, USA.
Department of Physics, <a href="https://ror.org/04p491231">The Pennsylvania State University</a>, University Park, Pennsylvania 16802, USA.
Phys Rev Lett. 2024 Sep 20;133(12):120604. doi: 10.1103/PhysRevLett.133.120604.
Coherent dynamics of interacting quantum particles plays a central role in the study of strongly correlated quantum matter and the pursuit of quantum information processors. Here, we present the state space of interacting Rydberg atoms as a synthetic landscape on which to control and observe coherent and correlated dynamics. With full control of the coupling strengths and energy offsets between the pairs of sites in a nine-site synthetic lattice, we realize quantum walks, Bloch oscillations, and dynamics in an Escher-type "continuous staircase." In the interacting regime, we observe correlated quantum walks, Bloch oscillations, and confinement of particle pairs. Additionally, we simultaneously tilt our lattice both up and down to achieve coherent pair oscillations. When combined with a few straightforward upgrades, this work establishes synthetic Rydberg lattices of interacting atom arrays as a promising platform for programmable quantum many-body dynamics with access to features that are difficult to realize in real-space lattices.
相互作用量子粒子的相干动力学在强关联量子物质的研究以及量子信息处理器的探索中起着核心作用。在此,我们将相互作用的里德堡原子的状态空间呈现为一个合成景观,用于控制和观测相干及关联动力学。通过完全控制九格点合成晶格中各格点对之间的耦合强度和能量偏移,我们实现了量子行走、布洛赫振荡以及埃舍尔型“连续阶梯”中的动力学。在相互作用区域,我们观测到了关联量子行走、布洛赫振荡以及粒子对的禁闭。此外,我们同时向上和向下倾斜晶格以实现相干对振荡。结合一些简单的升级,这项工作将相互作用原子阵列的合成里德堡晶格确立为一个有前景的平台,用于可编程量子多体动力学,可实现一些在实空间晶格中难以实现的特性。