Suppr超能文献

基于支持向量机的变温环境下钻井液流变参数标定建模

Calibration modeling of drilling fluid rheological parameters in variable temperature environment based on support vector machine.

作者信息

Zhang He, Luo Rong, Yang Hai

机构信息

School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China.

出版信息

Rev Sci Instrum. 2024 Oct 1;95(10). doi: 10.1063/5.0223599.

Abstract

Traditional measurement of drilling fluid rheological parameters suffers from significant lag due to the inability of the instruments to promptly capture real-time parameters of the drilling fluid. These measurement models are typically constructed based on fixed temperature conditions and empirical formulas, rendering them inadequate for complex temperature gradient environments. Consequently, this limitation results in increased prediction errors, severely compromising the precise monitoring of drilling fluid performance. Aiming at the problems of low accuracy and poor stability of drilling fluid measurements under variable temperature conditions, a support vector machine-based calibration model for drilling fluid rheological parameters in a variable temperature environment is proposed in this paper. First, the measurement principle of the double-tube differential pressure rheology real-time measurement device is analyzed. The relationship between shear stress and shear rate is then established using differential pressure sensor and flow rate data. Utilizing the gray wolf optimization algorithm to optimize the kernel function weights and parameters, an SVM-based calibration model for predicting drilling fluid rheology correction parameters is constructed. Finally, a real-time monitoring platform for drilling fluid is developed. Experimental results show that the maximum relative errors for the predictions of apparent viscosity, plastic viscosity, and yield point are within ±5%, with coefficients of determination (R2) all greater than 0.95. These results validate the effectiveness of the proposed method in accurately monitoring the rheological performance of drilling fluids.

摘要

传统的钻井液流变参数测量由于仪器无法及时捕捉钻井液的实时参数而存在显著滞后。这些测量模型通常基于固定温度条件和经验公式构建,使其在复杂温度梯度环境中不够适用。因此,这种局限性导致预测误差增加,严重影响了对钻井液性能的精确监测。针对变温条件下钻井液测量精度低和稳定性差的问题,本文提出了一种基于支持向量机的变温环境下钻井液流变参数校准模型。首先,分析了双管压差流变实时测量装置的测量原理。然后利用压差传感器和流量数据建立剪切应力与剪切速率之间的关系。利用灰狼优化算法优化核函数权重和参数,构建了基于支持向量机的钻井液流变校正参数预测校准模型。最后,开发了钻井液实时监测平台。实验结果表明,表观粘度、塑性粘度和屈服点预测的最大相对误差在±5%以内,决定系数(R2)均大于0.95。这些结果验证了所提方法在准确监测钻井液流变性能方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验