Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China.
Adv Mater. 2024 Nov;36(48):e2409041. doi: 10.1002/adma.202409041. Epub 2024 Oct 7.
Organic photothermal materials have attracted extensive attention due to their designable molecular structure, tunable excited-state properties, and excellent biocompatibility, however, the development of near-infrared II (NIR-II) absorbing organic photothermal materials with high photothermal conversion efficiency (PTCE) and molar extinction coefficient (ɛ) remains challenging. Herein, a novel "electron-donor iteration" strategy is proposed to construct organic photothermal dendrimers (CR-DPA-T, CR-(DPA)-T and CR-(DPA)-T) with donor-π-acceptor-π-donor (D-π-A-π-D) features and diradical characteristics. Owing to the enhanced D-A effect and intramolecular motions, their absorption and photothermal capacity increase as the generation grows. Surprisingly, an excellent photothermal performance (ɛ × PTCE) with a superb value of 2.85 × 10 in the NIR-II region is achieved for CR-(DPA)-T nanoparticles (CR-(DPA)-T NPs) compared to most reported counterparts. Besides, CR-(DPA)-T NPs exhibit superior antitumor efficacy by the synergistic effect of photothermal therapy (PTT) and immunotherapy, efficiently inhibiting the growth of both primary and distant tumors. To the best knowledge, organic photothermal dendrimer is for the first time reported, and a universal donor engineering strategy is offered to develop NIR-II-absorbing organic photothermal materials for photothermal immunotherapy.
有机光热材料因其可设计的分子结构、可调谐的激发态性质和优异的生物相容性而受到广泛关注,然而,开发具有高光热转换效率(PTCE)和摩尔消光系数(ɛ)的近红外二区(NIR-II)吸收有机光热材料仍然具有挑战性。在此,提出了一种新的“电子供体迭代”策略,构建具有给体-π-受体-π-给体(D-π-A-π-D)特征和双自由基特征的有机光热树枝状大分子(CR-DPA-T、CR-(DPA)-T 和 CR-(DPA)-T)。由于增强的 D-A 效应和分子内运动,随着代的增加,它们的吸收和光热能力增加。令人惊讶的是,与大多数报道的同类物相比,CR-(DPA)-T 纳米颗粒(CR-(DPA)-T NPs)在近红外二区实现了优异的光热性能(ɛ×PTCE),具有 2.85×10 的卓越值。此外,CR-(DPA)-T NPs 通过光热治疗(PTT)和免疫治疗的协同作用表现出优异的抗肿瘤疗效,有效抑制原发性和远处肿瘤的生长。据了解,这是首次报道有机光热树枝状大分子,并提供了一种通用的供体工程策略来开发用于光热免疫治疗的近红外二区吸收有机光热材料。