Suppr超能文献

基于 LightGBM 混合模型的森林地区 DEM 校正。

LightGBM hybrid model based DEM correction for forested areas.

机构信息

College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China.

出版信息

PLoS One. 2024 Oct 7;19(10):e0309025. doi: 10.1371/journal.pone.0309025. eCollection 2024.

Abstract

The accuracy of digital elevation models (DEMs) in forested areas plays a crucial role in canopy height monitoring and ecological sensitivity analysis. Despite extensive research on DEMs in recent years, significant errors still exist in forested areas due to factors such as canopy occlusion, terrain complexity, and limited penetration, posing challenges for subsequent analyses based on DEMs. Therefore, a CNN-LightGBM hybrid model is proposed in this paper, with four different types of forests (tropical rainforest, coniferous forest, mixed coniferous and broad-leaved forest, and broad-leaved forest) selected as study sites to validate the performance of the hybrid model in correcting COP30DEM in different forest area DEMs. In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. This choice is based on LightGBM's leaf-growth strategy and histogram linking methods, which are effective in reducing the data's memory footprint and utilising more of the data without sacrificing speed. The study uses elevation values from ICESat-2 as ground truth, covering several parameters including COP30DEM, canopy height, forest coverage, slope, terrain roughness and relief amplitude. To validate the superiority of the CNN-LightGBM hybrid model in DEMs correction compared to other models, a test of LightGBM model, CNN-SVR model, and SVR model is conducted within the same sample space. To prevent issues such as overfitting or underfitting during model training, although common meta-heuristic optimisation algorithms can alleviate these problems to a certain extent, they still have some shortcomings. To overcome these shortcomings, this paper cites an improved SSA search algorithm that incorporates the ingestion strategy of the FA algorithm to increase the diversity of solutions and global search capability, the Firefly Algorithm-based Sparrow Search Optimization Algorithm (FA-SSA algorithm) is introduced. By comparing multiple models and validating the data with an airborne LiDAR reference dataset, the results show that the R2 (R-Square) of the CNN-LightGBM model improves by more than 0.05 compared to the other models, and performs better in the experiments. The FA-SSA-CNN-LightGBM model has the highest accuracy, with an RMSE of 1.09 meters, and a reduction of more than 30% of the RMSE when compared to the LightGBM and other hybrid models. Compared to other forested area DEMs (such as FABDEM and GEDI), its accuracy is improved by more than 50%, and the performance is significantly better than other commonly used DEMs in forested areas, indicating the feasibility of this method in correcting elevation errors in forested area DEMs and its significant importance in advancing global topographic mapping.

摘要

数字高程模型 (DEM) 在森林地区的精度在树冠高度监测和生态敏感性分析中起着至关重要的作用。尽管近年来对 DEM 进行了广泛的研究,但由于树冠遮挡、地形复杂和穿透能力有限等因素,森林地区仍存在较大误差,这给基于 DEM 的后续分析带来了挑战。因此,本文提出了一种基于卷积神经网络(CNN)和 LightGBM 的混合模型,选择了四种不同类型的森林(热带雨林、针叶林、针阔混交林和阔叶林)作为研究地点,以验证混合模型在不同森林地区 DEM 中校正 COP30DEM 的性能。在本文的混合模型中,选择使用具有 LightGBM 作为主要模型的 CNN 模型的 Densenet 架构。这种选择基于 LightGBM 的叶生长策略和直方图链接方法,这些方法有效地减少了数据的内存占用,并且在不牺牲速度的情况下利用了更多的数据。研究使用 ICESat-2 的高程值作为地面真值,涵盖了 COP30DEM、树冠高度、森林覆盖率、坡度、地形粗糙度和地形起伏度等多个参数。为了验证 CNN-LightGBM 混合模型在 DEM 校正方面相对于其他模型的优越性,在相同的样本空间内进行了 LightGBM 模型、CNN-SVR 模型和 SVR 模型的测试。为了防止模型训练过程中出现过拟合或欠拟合等问题,尽管常见的元启发式优化算法可以在一定程度上缓解这些问题,但它们仍然存在一些缺点。为了克服这些缺点,本文引用了一种改进的 SSA 搜索算法,该算法结合了 FA 算法的吸收策略,以增加解决方案的多样性和全局搜索能力,引入了基于萤火虫算法的麻雀搜索优化算法(FA-SSA 算法)。通过比较多个模型并使用机载 LiDAR 参考数据集进行验证,结果表明,与其他模型相比,CNN-LightGBM 模型的 R2(R 平方)提高了 0.05 以上,在实验中表现更好。FA-SSA-CNN-LightGBM 模型具有最高的精度,均方根误差(RMSE)为 1.09 米,与 LightGBM 和其他混合模型相比,RMSE 降低了 30%以上。与其他森林地区的 DEM(如 FABDEM 和 GEDI)相比,其精度提高了 50%以上,性能明显优于其他常用的森林地区 DEM,表明该方法在校正森林地区 DEM 高程误差方面具有可行性,对推进全球地形测绘具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/357e/11458030/e960b70fdcf4/pone.0309025.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验