Wang Bipeng, Liu Dongyu, Wu Yifan, Vasenko Andrey S, Prezhdo Oleg V
Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States.
HSE University, 101000 Moscow, Russia.
J Phys Chem Lett. 2024 Oct 17;15(41):10384-10391. doi: 10.1021/acs.jpclett.4c02586. Epub 2024 Oct 7.
Nanoscale and condensed matter systems evolve on multiple length- and time-scales, and rare events such as local phase transformation, ion segregation, defect migration, interface reconstruction, and grain boundary sliding can have a profound influence on material properties. We demonstrate how outlier detection indices can be used to identify rare events in machine-learning based, high-dimensional molecular dynamics (MD) simulations. Designed to order data-points from typical to untypical, the indices enable one to capture atomic events that are hard to detect otherwise. We demonstrate the approach with a nanosecond MD simulation of a grain boundary in a metal halide perovskite that is extensively studied for solar energy and optoelectronic applications. The method captures the initial grain boundary sliding and a spontaneous fluctuation half a nanosecond later, both events giving rise to persistent deep electronic trap states that impact charge carrier lifetime and transport and material performance. The approach offers a generalizable and simple method for identifying outlier events in complex condensed matter, molecular, and nanoscale systems.
纳米尺度和凝聚态物质系统在多个长度和时间尺度上演变,诸如局部相变、离子偏析、缺陷迁移、界面重构和晶界滑动等罕见事件会对材料性能产生深远影响。我们展示了如何使用异常值检测指标来识别基于机器学习的高维分子动力学(MD)模拟中的罕见事件。这些指标旨在将数据点从典型排序到非典型,使人们能够捕捉到否则难以检测到的原子事件。我们通过对一种金属卤化物钙钛矿中的晶界进行纳秒级MD模拟来演示该方法,这种金属卤化物钙钛矿在太阳能和光电子应用中得到了广泛研究。该方法捕捉到了初始的晶界滑动以及半纳秒后的自发波动,这两个事件都会产生持久的深电子陷阱态,影响电荷载流子寿命、传输和材料性能。该方法为识别复杂凝聚态物质、分子和纳米尺度系统中的异常事件提供了一种可推广且简单的方法。