Shida Naoki, Shimizu Yugo, Yonezawa Akizumi, Harada Juri, Furutani Yuka, Muto Yusuke, Kurihara Ryo, Kondo Junko N, Sato Eisuke, Mitsudo Koichi, Suga Seiji, Iguchi Shoji, Kamiya Kazuhide, Atobe Mahito
Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
J Am Chem Soc. 2024 Nov 6;146(44):30212-30221. doi: 10.1021/jacs.4c09107. Epub 2024 Oct 7.
The production of cyclic amines, which are vital to the pharmaceutical industry, relies on energy-intensive thermochemical hydrogenation. Herein, we demonstrate the electrocatalytic hydrogenation of nitrogen-containing aromatic compounds, specifically pyridine, at ambient temperature and pressure via a membrane electrode assembly with an anion-exchange membrane. We synthesized piperidine using a carbon-supported rhodium catalyst, achieving a current density of 25 mA cm and a current efficiency of 99% under a circular flow until 5 F mol. Quantitative conversion of pyridine into piperidine with 98% yield was observed after passing 9 F mol, corresponding to 65% of current efficiency. The reduction of Rh oxides on the catalyst surface was crucial for catalysis. The Rh(0) surface interacts moderately with piperidine, decreasing the energy required for the rate-determining desorption step. The proposed process is applicable to other nitrogen-containing aromatic compounds and could be efficiently scaled up. This method presents clear advantages over traditional high-temperature and high-pressure thermochemical catalytic processes.
环状胺的生产对制药行业至关重要,其依赖于能源密集型的热化学氢化反应。在此,我们展示了通过带有阴离子交换膜的膜电极组件,在常温常压下对含氮芳香化合物(特别是吡啶)进行电催化氢化反应。我们使用碳负载铑催化剂合成了哌啶,在循环流动直至5法拉第每摩尔的情况下,实现了25毫安每平方厘米的电流密度和99%的电流效率。通过9法拉第每摩尔后,观察到吡啶定量转化为哌啶,产率为98%,对应电流效率为65%。催化剂表面铑氧化物的还原对催化作用至关重要。Rh(0)表面与哌啶适度相互作用,降低了速率决定解吸步骤所需的能量。所提出的工艺适用于其他含氮芳香化合物,并且可以有效地扩大规模。该方法相对于传统的高温高压热化学催化工艺具有明显优势。