Neurobiology and Anatomy, and Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129.
Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697.
eNeuro. 2024 Nov 8;11(11). doi: 10.1523/ENEURO.0512-23.2024. Print 2024 Nov.
Here we test the stochastic dynamic operator (SDO) as a new framework for describing physiological signal dynamics relative to spiking or stimulus events. The SDO is a natural extension of existing spike-triggered average (STA) or stimulus-triggered average techniques currently used in neural analysis. It extends the classic STA to cover state-dependent and probabilistic responses where STA may fail. In simulated data, SDO methods were more sensitive and specific than the STA for identifying state-dependent relationships. We have tested SDO analysis for interactions between electrophysiological recordings of spinal interneurons, single motor units, and aggregate muscle electromyograms (EMG) of major muscles in the spinal frog hindlimb. When predicting target signal behavior relative to spiking events, the SDO framework outperformed or matched classical spike-triggered averaging methods. SDO analysis permits more complicated spike-signal relationships to be captured, analyzed, and interpreted visually and intuitively. SDO methods can be applied at different scales of interest where spike-triggered averaging methods are currently employed, and beyond, from single neurons to gross motor behaviors. SDOs may be readily generated and analyzed using the provided We anticipate this method will be broadly useful for describing dynamical signal behavior and uncovering state-dependent relationships of stochastic signals relative to discrete event times.
在这里,我们测试了随机动态算子(SDO)作为一种新的框架,用于描述与尖峰或刺激事件相关的生理信号动力学。SDO 是现有尖峰触发平均(STA)或刺激触发平均技术的自然扩展,目前用于神经分析。它将经典的 STA 扩展到涵盖状态相关和概率响应,在这些情况下 STA 可能会失败。在模拟数据中,SDO 方法比 STA 更敏感和特异,可用于识别状态相关关系。我们已经测试了 SDO 分析在脊髓中间神经元、单个运动单位和脊髓青蛙后肢主要肌肉的肌电图(EMG)的电生理记录之间的相互作用。当预测相对于尖峰事件的目标信号行为时,SDO 框架优于或匹配经典的尖峰触发平均方法。SDO 分析允许更复杂的尖峰信号关系被捕获、分析和直观地解释。SDO 方法可以在当前使用尖峰触发平均方法的不同感兴趣的尺度上应用,并且可以扩展到从单个神经元到总体运动行为。SDO 可以使用提供的方法轻松生成和分析。我们预计这种方法将广泛用于描述动态信号行为,并揭示相对于离散事件时间的随机信号的状态相关关系。