Suppr超能文献

[一种用于个体化预测肝硬化患者隐匿性(轻微)肝性脑病发生风险的列线图预测模型]

[A nomogram prediction model for individualized prediction of the risk of covert (minimal) hepatic encephalopathy occurrence in patients with liver cirrhosis].

作者信息

Li X Q, Li Y, Ni Y Q, Cao W, Yin T T, Lu R

机构信息

Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China.

出版信息

Zhonghua Gan Zang Bing Za Zhi. 2024 Sep 20;32(9):828-834. doi: 10.3760/cma.j.cn501113-20230806-00035.

Abstract

To construct an individualized nomogram prediction model for predicting the risk of the occurrence of covert hepatic encephalopathy (CHE) in patients with liver cirrhosis. 325 cases of liver cirrhosis admitted from January 2020 to December 2022 were selected as the study subjects. Patients were divided into training (=213) and validation (=112) sets using a cluster randomization method. The risk factors for CHE occurrence in patients with cirrhosis in the training set were analyzed by univariate and multivariate logistic regression. A prediction model related to the nomogram was established. Independent risk factors for the occurrence of CHE in patients with cirrhosis were a history of hepatic encephalopathy, co-infection, gastrointestinal bleeding, severe ascites, prothrombin time ≥16 seconds, high total bilirubin, and high blood ammonia levels (<0.05). Nomogram model validation results: The model had a net benefit for the training and validation sets, with C-indices of 0.830 (95%: 0.802-0.858) and 0.807 (95%: 0.877-0.837), respectively, within the range of 0-96%. The calibration curves of both sets were evenly close to the ideal curves. The AUCs for the ROC curves in both sets were 0.827 (95%: 0.796-0.858) and 0.811 (95%: 0.787-0.836), respectively. Patients with cirrhosis have many risk factors for CHE occurrence. The nomogram model constructed based on these risk factors possesses a good predictive value for assessing CHE occurrence in cirrhotic patients.

摘要

构建用于预测肝硬化患者发生隐匿性肝性脑病(CHE)风险的个体化列线图预测模型。选取2020年1月至2022年12月收治的325例肝硬化患者作为研究对象。采用整群随机化方法将患者分为训练集(=213)和验证集(=112)。通过单因素和多因素逻辑回归分析训练集中肝硬化患者发生CHE的危险因素。建立了与列线图相关的预测模型。肝硬化患者发生CHE的独立危险因素为肝性脑病病史、合并感染、胃肠道出血、严重腹水、凝血酶原时间≥16秒、总胆红素升高和血氨水平升高(<0.05)。列线图模型验证结果:该模型对训练集和验证集均有净效益,C指数分别为0.830(95%:0.802 - 0.858)和0.807(95%:0.877 - 0.837),在0 - 96%范围内。两组的校准曲线均均匀接近理想曲线。两组ROC曲线的AUC分别为0.827(95%:0.796 - 0.858)和0.811(95%:0.787 - 0.836)。肝硬化患者发生CHE有多种危险因素。基于这些危险因素构建的列线图模型对评估肝硬化患者CHE的发生具有良好的预测价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验