Suppr超能文献

通过田间邻体效应的基因组预测减少混种中的食草性。

Reducing herbivory in mixed planting by genomic prediction of neighbor effects in the field.

机构信息

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.

Research Institute for Food and Agriculture, Ryukoku University, Yokotani 1-5, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan.

出版信息

Nat Commun. 2024 Oct 7;15(1):8467. doi: 10.1038/s41467-024-52374-7.

Abstract

Genetically diverse populations can increase plant resistance to natural enemies. Yet, beneficial genotype pairs remain elusive due to the occurrence of positive or negative effects of mixed planting on plant resistance, respectively called associational resistance or susceptibility. Here, we identify key genotype pairs responsible for associational resistance to herbivory using the genome-wide polymorphism data of the plant species Arabidopsis thaliana. To quantify neighbor interactions among 199 genotypes grown in a randomized block design, we employ a genome-wide association method named "Neighbor GWAS" and genomic prediction inspired by the Ising model of magnetics. These analyses predict that 823 of the 19,701 candidate pairs can reduce herbivory in mixed planting. We planted three pairs with the predicted effects in mixtures and monocultures, and detected 18-30% reductions in herbivore damage in the mixed planting treatment. Our study shows the power of genomic prediction to assemble genotype mixtures with positive biodiversity effects.

摘要

遗传多样性丰富的种群可以提高植物对天敌的抗性。然而,由于混种对植物抗性的影响可能是正向的也可能是负向的,分别被称为关联抗性或易感性,因此有益的基因型组合仍然难以捉摸。在这里,我们使用植物物种拟南芥的全基因组多态性数据,确定了导致与草食性相关的关联抗性的关键基因型组合。为了量化在随机区组设计中种植的 199 个基因型之间的邻接相互作用,我们采用了一种名为“邻接 GWAS”的全基因组关联方法和基于磁体伊辛模型的基因组预测。这些分析预测,在 19701 对候选组合中,有 823 对可以减少混种中的草食性。我们将预测有效果的三对组合种植在混合物和单培中,在混种处理中检测到 18-30%的草食性动物侵害减少。我们的研究表明,基因组预测在组装具有正向生物多样性效应的基因型混合物方面具有强大的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/284b/11458863/2c3178d8f7a0/41467_2024_52374_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验