Suppr超能文献

基于大语言模型的罕见病表型分析混合框架。

A hybrid framework with large language models for rare disease phenotyping.

机构信息

Institute of Health Informatics, University College London, London, UK.

UCB Pharma UK, Slough, UK.

出版信息

BMC Med Inform Decis Mak. 2024 Oct 8;24(1):289. doi: 10.1186/s12911-024-02698-7.

Abstract

PURPOSE

Rare diseases pose significant challenges in diagnosis and treatment due to their low prevalence and heterogeneous clinical presentations. Unstructured clinical notes contain valuable information for identifying rare diseases, but manual curation is time-consuming and prone to subjectivity. This study aims to develop a hybrid approach combining dictionary-based natural language processing (NLP) tools with large language models (LLMs) to improve rare disease identification from unstructured clinical reports.

METHODS

We propose a novel hybrid framework that integrates the Orphanet Rare Disease Ontology (ORDO) and the Unified Medical Language System (UMLS) to create a comprehensive rare disease vocabulary. SemEHR, a dictionary-based NLP tool, is employed to extract rare disease mentions from clinical notes. To refine the results and improve accuracy, we leverage various LLMs, including LLaMA3, Phi3-mini, and domain-specific models like OpenBioLLM and BioMistral. Different prompting strategies, such as zero-shot, few-shot, and knowledge-augmented generation, are explored to optimize the LLMs' performance.

RESULTS

The proposed hybrid approach demonstrates superior performance compared to traditional NLP systems and standalone LLMs. LLaMA3 and Phi3-mini achieve the highest F1 scores in rare disease identification. Few-shot prompting with 1-3 examples yields the best results, while knowledge-augmented generation shows limited improvement. Notably, the approach uncovers a significant number of potential rare disease cases not documented in structured diagnostic records, highlighting its ability to identify previously unrecognized patients.

CONCLUSION

The hybrid approach combining dictionary-based NLP tools with LLMs shows great promise for improving rare disease identification from unstructured clinical reports. By leveraging the strengths of both techniques, the method demonstrates superior performance and the potential to uncover hidden rare disease cases. Further research is needed to address limitations related to ontology mapping and overlapping case identification, and to integrate the approach into clinical practice for early diagnosis and improved patient outcomes.

摘要

目的

由于罕见病的患病率低且临床表现多样,因此在诊断和治疗方面存在重大挑战。非结构化临床记录包含用于识别罕见病的有价值信息,但手动策展既耗时又容易主观。本研究旨在开发一种结合基于词典的自然语言处理(NLP)工具和大型语言模型(LLM)的混合方法,以提高从非结构化临床报告中识别罕见病的能力。

方法

我们提出了一种新颖的混合框架,该框架结合了孤儿疾病本体论(ORDO)和统一医学语言系统(UMLS),以创建一个全面的罕见病词汇表。SemEHR,一种基于词典的 NLP 工具,用于从临床记录中提取罕见病提及。为了改进结果和提高准确性,我们利用了各种 LLM,包括 LLaMA3、Phi3-mini 以及特定于领域的模型,如 OpenBioLLM 和 BioMistral。我们探索了不同的提示策略,例如零样本、少样本和知识增强生成,以优化 LLM 的性能。

结果

与传统的 NLP 系统和独立的 LLM 相比,所提出的混合方法表现出优越的性能。在罕见病识别方面,LLaMA3 和 Phi3-mini 实现了最高的 F1 分数。使用 1-3 个示例的少样本提示可获得最佳结果,而知识增强生成的效果有限。值得注意的是,该方法揭示了大量未记录在结构化诊断记录中的潜在罕见病病例,突出了其识别以前未被识别的患者的能力。

结论

将基于词典的 NLP 工具与 LLM 相结合的混合方法在从非结构化临床报告中识别罕见病方面具有很大的潜力。通过利用两种技术的优势,该方法表现出优越的性能和发现隐藏罕见病病例的潜力。需要进一步研究来解决与本体映射和重叠病例识别相关的限制,并将该方法整合到临床实践中,以实现早期诊断和改善患者结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a476/11460004/012cc7c04d3d/12911_2024_2698_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验