Singh Robin, Biswas Ashmita, Barman Narad, Iqbal Muzaffar, Thapa Ranjit, Dey Ramendra Sundar
Institute of Nano Science and Technology, Sector-81, Mohali, Punjab, 140306, India.
Department of Physics, SRM University AP, Amaravati, Andhra Pradesh, 522 240, India.
Small. 2024 Dec;20(51):e2406718. doi: 10.1002/smll.202406718. Epub 2024 Oct 7.
Electrocatalytic nitrogen oxidation reaction (NOR) offers a sustainable alternative to the conventional methods such as the Haber-Bosch and Ostwald oxidation processes for converting nitrogen (N) into high-value-added nitrate (NO ) under mild conditions. However, the concurrent oxygen evolution reaction (OER) and inefficient N absorption/activation led to slow NOR kinetics, resulting in low Faradaic efficiencies and NO yield rates. This study explored oxygen-vacancy induced tin oxide (SnO-O) as an efficient NOR electrocatalyst, achieving an impressive Faradaic efficiency (FE) of 54.2% and a notable NO yield rate (22.05 µg h mg ) at 1.7 V versus reversible hydrogen electrode (RHE) in 0.1 m NaSO. Experimental results indicate that SnO-O possesses substantially more oxygen vacancies than SnO, correlating with enhanced NOR performance. Computational findings suggest that the superior performance of SnO-O at a relatively low overpotential is due to reduced thermodynamic barrier for the oxidation of *N to *NOH during the rate-determining step, making this step energetically favorable than the oxygen adsorption step for OER. This work demonstrates the feasibility of ambient nitrate synthesis on the soft acidic Sn active site and introduces a new approach for rational catalyst design.
电催化氮氧化反应(NOR)为传统方法(如哈伯-博施法和奥斯特瓦尔德氧化法)提供了一种可持续的替代方案,可在温和条件下将氮(N)转化为高附加值的硝酸盐(NO )。然而,同时发生的析氧反应(OER)和低效的氮吸收/活化导致NOR动力学缓慢,从而导致法拉第效率和NO 产率较低。本研究探索了氧空位诱导的氧化锡(SnO-O)作为一种高效的NOR电催化剂,在0.1 m NaSO中,相对于可逆氢电极(RHE)在1.7 V时实现了令人印象深刻的54.2%的法拉第效率(FE)和显著的NO 产率(22.05 µg h mg )。实验结果表明,SnO-O比SnO具有更多的氧空位,这与增强的NOR性能相关。计算结果表明,SnO-O在相对较低的过电位下的优异性能是由于在速率决定步骤中N氧化为NOH的热力学势垒降低,使得该步骤在能量上比OER的氧吸附步骤更有利。这项工作证明了在软酸性Sn活性位点上进行环境硝酸盐合成的可行性,并引入了一种合理设计催化剂的新方法。