Suppr超能文献

基于持续葡萄糖监测的可解释机器学习模型预测1型糖尿病患者高血糖、低血糖和血糖变异性的每周风险

Explainable Machine-Learning Models to Predict Weekly Risk of Hyperglycemia, Hypoglycemia, and Glycemic Variability in Patients With Type 1 Diabetes Based on Continuous Glucose Monitoring.

作者信息

Cichosz Simon Lebech, Olesen Søren Schou, Jensen Morten Hasselstrøm

机构信息

Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Department of Clinical Medicine, Faculty of Medicine, Aalborg University Hospital, Aalborg, Denmark.

出版信息

J Diabetes Sci Technol. 2024 Oct 8:19322968241286907. doi: 10.1177/19322968241286907.

Abstract

BACKGROUND AND OBJECTIVE

The aim of this study was to develop and validate explainable prediction models based on continuous glucose monitoring (CGM) and baseline data to identify a week-to-week risk of CGM key metrics (hyperglycemia, hypoglycemia, glycemic variability). By having a weekly prediction of CGM key metrics, it is possible for the patient or health care personnel to take immediate preemptive action.

METHODS

We analyzed, trained, and internally tested three prediction models (Logistic regression, XGBoost, and TabNet) using CGM data from 187 type 1 diabetes patients with long-term CGM monitoring. A binary classification approach combined with feature engineering deployed on the CGM signals was used to predict hyperglycemia, hypoglycemia, and glycemic variability based on consensus targets (time above range ≥5%, time below range ≥4%, coefficient of variation ≥36%). The models were validated in two independent cohorts with a total of 223 additional patients of varying ages.

RESULTS

A total of 46 593 weeks of CGM data were included in the analysis. For the best model (XGBoost), the area under the receiver operating characteristic curve (ROC-AUC) was 0.9 [95% confidence interval (CI) = 0.89-0.91], 0.89 [95% CI = 0.88-0.9], and 0.8 [95% CI = 0.79-0.81] for predicting hyperglycemia, hypoglycemia, and glycemic variability in the interval validation, respectively. The validation test showed good generalizability of the models with ROC-AUC of 0.88 to 0.95, 0.84 to 0.89, and 0.80 to 0.82 for predicting the glycemic outcomes.

CONCLUSION

Prediction models based on real-world CGM data can be used to predict the risk of unstable glycemic control in the forthcoming week. The models showed good performance in both internal and external validation cohorts.

摘要

背景与目的

本研究的目的是开发并验证基于连续血糖监测(CGM)和基线数据的可解释预测模型,以识别CGM关键指标(高血糖、低血糖、血糖波动)逐周的风险。通过对CGM关键指标进行每周预测,患者或医护人员能够立即采取预先防范措施。

方法

我们使用来自187名接受长期CGM监测的1型糖尿病患者的CGM数据,分析、训练并进行了内部测试三个预测模型(逻辑回归、XGBoost和TabNet)。采用二元分类方法并结合在CGM信号上进行的特征工程,基于共识目标(高于范围时间≥5%、低于范围时间≥4%、变异系数≥36%)来预测高血糖、低血糖和血糖波动。这些模型在两个独立队列中进行了验证,共有另外223名不同年龄的患者。

结果

分析共纳入46593周的CGM数据。对于最佳模型(XGBoost),在区间验证中预测高血糖、低血糖和血糖波动时,受试者操作特征曲线下面积(ROC-AUC)分别为0.9 [95%置信区间(CI)= 0.89 - 0.91]、0.89 [95% CI = 0.88 - 0.9]和0.8 [95% CI = 0.79 - 0.81]。验证测试表明模型具有良好的通用性,预测血糖结果时的ROC-AUC为0.88至0.95、0.84至0.89和0.80至0.82。

结论

基于实际CGM数据的预测模型可用于预测未来一周血糖控制不稳定的风险。这些模型在内部和外部验证队列中均表现出良好性能。

相似文献

本文引用的文献

3
Hypoglycemia event prediction from CGM using ensemble learning.使用集成学习从连续血糖监测(CGM)数据预测低血糖事件
Front Clin Diabetes Healthc. 2022 Dec 9;3:1066744. doi: 10.3389/fcdhc.2022.1066744. eCollection 2022.
4
6. Glycemic Targets: Standards of Care in Diabetes-2023.6. 血糖目标:2023 年糖尿病护理标准。
Diabetes Care. 2023 Jan 1;46(Suppl 1):S97-S110. doi: 10.2337/dc23-S006.
9
Penalty weighted glucose prediction models could lead to better clinically usage.惩罚加权血糖预测模型可以更好地用于临床。
Comput Biol Med. 2021 Nov;138:104865. doi: 10.1016/j.compbiomed.2021.104865. Epub 2021 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验