Cai Xue, Zhang Caiping, Ruan Haijun, Chen Zeping, Zhang Linjing, Sauer Dirk Uwe, Li Weihan
National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing, 100044, China.
Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL), Campus-Boulevard 89, 52074, Aachen, Germany.
Adv Sci (Weinh). 2024 Nov;11(44):e2406934. doi: 10.1002/advs.202406934. Epub 2024 Oct 8.
To non-destructively resolve and diagnose the degradation mechanisms of lithium-ion batteries (LIBs), it is necessary to cross-scale decouple complex kinetic processes through the distribution of relaxation times (DRT). However, LIBs with low interfacial impedance render DRT unreliable without data processing and closed-loop validation. This study proposes a hierarchical analytical framework to enhance timescale resolution and reduce uncertainty, including interfacial impedance reconstruction and multi-dimensional DRT analysis. Interfacial impedance is reconstructed by eliminating simulated inductive and diffusive impedance based on a high-fidelity frequency-domain model. Multi-dimensional DRT decouples solid electrolyte interphase (SEI) and charge transfer (CT) processes by the reversibility of electrochemical reactions with state of charge (SOC) to characterize electrode kinetic evolution driven by SOC and temperature through timescales and peak area. The findings reveal that reconstructed impedance improves the accuracy of identified time constants by ≈20%. Cross-scale DRT results reveal that SOCs below 10% at 25 °C effectively distinguish electrode kinetics due to the high correlation between cathodic CT and SOC. Kinetic metrics characterize that anodic SEI or CT are different control steps limiting the low-temperature performance of different cells. This work underscores the potential of the proposed framework for non-destructive diagnostics of kinetic evolution.
为了无损地解析和诊断锂离子电池(LIBs)的降解机制,有必要通过弛豫时间分布(DRT)对复杂的动力学过程进行跨尺度解耦。然而,界面阻抗较低的锂离子电池在没有数据处理和闭环验证的情况下,会使DRT不可靠。本研究提出了一个分层分析框架,以提高时间尺度分辨率并降低不确定性,包括界面阻抗重建和多维DRT分析。基于高保真频域模型,通过消除模拟的电感和扩散阻抗来重建界面阻抗。多维DRT通过电化学反应用电荷状态(SOC)的可逆性来解耦固体电解质界面(SEI)和电荷转移(CT)过程,以通过时间尺度和峰面积来表征由SOC和温度驱动的电极动力学演变。研究结果表明,重建后的阻抗将识别出的时间常数的准确性提高了约20%。跨尺度DRT结果表明,在25℃下,由于阴极CT与SOC之间的高度相关性,低于10%的SOC能有效地区分电极动力学。动力学指标表明,阳极SEI或CT是限制不同电池低温性能的不同控制步骤。这项工作强调了所提出的框架在动力学演变无损诊断方面的潜力。