Tan Yicheng, Chen Duo, Yao Tengyu, Zhang Yiming, Miao Chenglin, Yang Hang, Wang Yuanhang, Li Li, Kotsiubynskyi Volodymyr, Han Wei, Shen Laifa
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
College of Physics, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, China.
Adv Sci (Weinh). 2024 Nov;11(44):e2407410. doi: 10.1002/advs.202407410. Epub 2024 Oct 8.
A large concentration gradient originating from sluggish ion transport on the surface of Zn metal anodes will result in uneven Zn flux, giving rise to severe dendrite growth, especially at high current density. Herein, an ion acceleration layer is introduced by a facile separator engineering strategy to realize modulated Zn flux and dendrite-free deposition. Zinc hexacyanoferrate as the modifying agent featuring strong zincophilicity and rapid diffusion tunnel can enable fast trap for Zn near the electrode surface and immediate transport onto deposition sites, respectively. The ion acceleration effect is substantiated by improved ion conductivity, decreased activated energy, and promoted Zn transference number, which can moderate concentration gradient to guide homogenous Zn flux distribution. As a result, the separator engineering guarantees Zn||Zn symmetrical cells with long-term stability of 2700 h at 2 mA cm, and 1770 h at a large current density of 10 mA cm. Moreover, cycling stability and rate capability for full cells with different cathodes can be substantially promoted by the modified separator, validating its superior practical feasibility. This study supplies a new scalable approach to tailoring ion flux near the electrode surface to enable robust Zn metal anodes at a high current density.
锌金属阳极表面离子传输缓慢所产生的大浓度梯度会导致锌通量不均匀,进而引发严重的枝晶生长,尤其是在高电流密度下。在此,通过一种简便的隔膜工程策略引入离子加速层,以实现对锌通量的调控和无枝晶沉积。六氰合铁酸锌作为改性剂,具有强烈的亲锌性和快速扩散通道,能够分别在电极表面附近快速捕获锌离子,并将其迅速传输到沉积位点。离子加速效应通过提高离子电导率、降低活化能和提高锌迁移数得到证实,这可以缓和浓度梯度,引导均匀的锌通量分布。结果,隔膜工程确保了锌||锌对称电池在2 mA cm² 下具有2700小时的长期稳定性,在10 mA cm² 的大电流密度下具有1770小时的长期稳定性。此外,改性隔膜可以显著提高不同阴极全电池的循环稳定性和倍率性能,验证了其卓越的实际可行性。本研究提供了一种新的可扩展方法,用于在电极表面附近调整离子通量,以在高电流密度下实现坚固的锌金属阳极。