Suppr超能文献

通过用高磁导率亚微米颗粒控制微米级间隙显著改善磁流变性能。

Significant Improvement in Magnetorheological Performance by Controlling Micron Interspaces with High Permeability Submicron Particles.

作者信息

Du Tianxiang, Ma Ning, Zhao Zenghui, Liu Yitong, Dong Xufeng, Huang Hao

机构信息

School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.

School of Infrastructure Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Nov;11(44):e2407765. doi: 10.1002/advs.202407765. Epub 2024 Oct 8.

Abstract

The shear yield strength, sedimentation stability and zero-field viscosity of magnetorheological fluids (MRFs) are crucial for practical vibration damping applications, yet achieving a balanced combination of these performances remains challenging. Developing MRFs with excellent comprehensive performance is key to advancing smart vibration damping technologies further. Theoretically, incorporating a multiscale particle system and leveraging synergistic effects between their can somewhat enhance MRFs' performance. However, this approach often faces issues such as insignificant increases in shear yield strength and excessive rise in zero-field viscosity. In response, this study employs a DC arc plasma method to synthesize a high magnetic permeability, low coercivity submicron FeNi particles, and further develops a novel CIPs-FeNi bidisperse MRFs. The introduction of submicron FeNi particles not only significantly enhances the shear2019 yield strength of MRFs under low magnetic fields but also promotes improvements in sedimentation stability and redispersibility without excessively increasing viscosity. Comprehensive performance analysis is conducted to explore the optimal content ratio, and detailed mechanisms for the enhancement of performance are elucidated through analysis of parameters such as chain-like structure, magnetic flux density and friction coefficient. Most importantly, the superior comprehensive performance combined with straightforward fabrication methods significantly enhances the engineering applicability of the CIPs-FeNi bidisperse MRFs.

摘要

磁流变液(MRF)的剪切屈服强度、沉降稳定性和零场粘度对于实际的减振应用至关重要,但要实现这些性能的平衡组合仍然具有挑战性。开发具有优异综合性能的磁流变液是进一步推进智能减振技术的关键。从理论上讲,引入多尺度粒子系统并利用它们之间的协同效应可以在一定程度上提高磁流变液的性能。然而,这种方法通常面临诸如剪切屈服强度增加不显著以及零场粘度过度上升等问题。针对这一情况,本研究采用直流电弧等离子体法合成了高磁导率、低矫顽力的亚微米FeNi颗粒,并进一步开发了一种新型的CIPs-FeNi双分散磁流变液。亚微米FeNi颗粒的引入不仅显著提高了磁流变液在低磁场下的剪切屈服强度,还促进了沉降稳定性和再分散性的改善,同时不会过度增加粘度。进行了综合性能分析以探索最佳含量比,并通过对链状结构、磁通密度和摩擦系数等参数的分析阐明了性能增强的详细机制。最重要的是,优异的综合性能与简单的制备方法相结合,显著提高了CIPs-FeNi双分散磁流变液的工程适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b6/11600251/d21eaf777d82/ADVS-11-2407765-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验