Cao Pengle, Wang Yu, Yang Jian, Niu Shichao, Pan Xinglong, Lu Wanheng, Li Luhong, Xu Yiming, Cui Jiabin, Ho Ghim Wei, Wang Xiao-Qiao
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China.
Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, P. R. China.
Adv Mater. 2024 Nov;36(48):e2409632. doi: 10.1002/adma.202409632. Epub 2024 Oct 8.
The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long-term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage-free toughening mechanism that involves dense long-chain entanglements and reversible strain-induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi-walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m) without compromising toughness and resilience. Furthermore, high-performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long-term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications.
软生物电子学的发展严重依赖于水凝胶的机电性能。尽管针对增强这些性能的各种材料和结构策略正在进行研究,但制备出同时具备高强度、高弹性且具有高导电性以用于长期动态生理监测的水凝胶仍然是一项艰巨的挑战。在此,介绍一种利用可扩展的层状异质水凝胶纤维(LHHF)的策略,该策略能够实现水凝胶的协同机电调制。通过一种无损伤增韧机制实现了LHHF的高韧性(1.4 MJ/m)和高弹性(在200%应变下恢复率超过92%),该机制涉及聚丙烯酸钠的密集长链缠结和可逆应变诱导结晶。LHHF独特的对称层状结构具有不同的电学和力学功能层,便于多壁碳纳米管的混合,从而在不影响韧性和弹性的情况下显著提高电导率(192.7 S/m)。此外,还开发了高性能的LHHF电容式离子电子应变/压力传感器和表皮电极,它们能够在长期动态条件下准确、稳定地捕捉来自人体的生物力学和生物电信号。LHHF为开发具有独特集成机电特性的水凝胶提供了一条有前景的途径,推动了实际可穿戴医疗应用的发展。