National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China; CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
CAS Key Laboratory of Biobased Materials, System Integration Engineering Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
Int J Biol Macromol. 2024 Nov;279(Pt 2):135165. doi: 10.1016/j.ijbiomac.2024.135165. Epub 2024 Aug 31.
Recently, hydrogel sensors have been widely applied in wearable and portable electronics, but the low mechanical property, intolerance of fatigue, and low sensitivity and adhesion limit their further applications. In this study, sulfonated nanocellulose (SCNF) with dual functionality was blended into polyacrylamide (PAM) hydrogel matrix to reinforce the mechanical strength and facilitate the homogeneous dispersion of carbon nanotubes (CNTs). The SCNF-CNT/PAM hydrogel was designed through free radical polymerization to achieve commendable mechanical, electrical, and multifunctional properties. The environmental-friendly SCNF serves as bio-templates to facilitate the assembling of CNT into integrated SCNF-CNT structures with good dispersity, thus enabling the establishment of an integrated conducting and reinforcing network. The fabricated SCNF-CNT/PAM hydrogel exhibited outstanding compressive strength (∼0.45 MPa at 50 % strain), tensile strength (∼169.12 kPa), and antifatigue capacity under cyclic stretching and pressing. Furthermore, the multifunctional sensors assembled using this hydrogel demonstrated high strain sensitivity (gauge factor ~ 3.7 at 100-400 % strain) and effectively detected human motions. This design principle provides promising prospects for constructing next-generation multifunctional flexible sensors, and the integration of these distinctive properties enables the prepared composite hydrogels to find potential applications in various areas, such as implantable soft electronic devices, electronic skin, and human movement monitoring.
最近,水凝胶传感器已广泛应用于可穿戴和便携式电子产品,但它们的机械性能低、不耐疲劳、灵敏度和附着力低,限制了它们的进一步应用。在这项研究中,具有双重功能的磺化纳米纤维素 (SCNF) 被混入聚丙烯酰胺 (PAM) 水凝胶基质中,以增强机械强度并促进碳纳米管 (CNT) 的均匀分散。SCNF-CNT/PAM 水凝胶通过自由基聚合进行设计,以实现出色的机械、电气和多功能特性。环保型 SCNF 用作生物模板,促进 CNT 组装成具有良好分散性的集成 SCNF-CNT 结构,从而建立集成的导电和增强网络。所制备的 SCNF-CNT/PAM 水凝胶表现出出色的压缩强度(在 50%应变时约为 0.45 MPa)、拉伸强度(在 169.12 kPa 时)和循环拉伸和压缩下的耐疲劳能力。此外,使用该水凝胶组装的多功能传感器表现出高应变灵敏度(在 100-400%应变时约为 3.7),并有效检测人体运动。这种设计原理为构建下一代多功能柔性传感器提供了广阔的前景,这些独特特性的集成使制备的复合水凝胶在各种领域中具有潜在的应用,例如可植入软电子设备、电子皮肤和人体运动监测。