Suppr超能文献

基于机器学习框架的区域尺度土地利用制图的光谱和地形特征融合。

Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application.

机构信息

Rubber Research Institute of Sri Lanka, Dartonfield, Agalawatta, 12200, Sri Lanka.

CSIRO Agriculture and Food, Ngunnawal Country, Clunies Ross Street, Black Mountain, ACT 2601, Australia.

出版信息

Environ Monit Assess. 2024 Oct 8;196(11):1030. doi: 10.1007/s10661-024-13178-w.

Abstract

This study investigated the dynamics of land use and land cover (LULC) modelling, mapping, and assessment in the Kegalle District of Sri Lanka, where policy decision-making is crucial in agricultural development where LULC temporal datasets are not readily available. Employing remotely sensed datasets and machine learning algorithms, the work presented here aims to compare the accuracy of three classification approaches in mapping LULC categories across the time in the study area primarily using the Google Earth Engine (GEE). Three classifiers namely random forest (RF), support vector machines (SVM), and classification and regression trees (CART) were used in LULC modelling, mapping, and change analysis. Different combinations of input features were investigated to improve classification performance. Developed models were optimised using the grid search cross-validation (CV) hyperparameter optimisation approach. It was revealed that the RF classifier constantly outstrips SVM and CART in terms of accuracy measures, highlighting its reliability in classifying the LULC. Land cover changes were examined for two periods, from 2001 to 2013 and 2013 to 2022, implying major alterations such as the conversion of rubber and coconut areas to built-up areas and barren lands. For suitable classification with higher accuracy, the study suggests utilising high spatial resolution satellite data, advanced feature selection approaches, and a combination of several spatial and spatial-temporal data sources. The study demonstrated practical applications of derived temporal LULC datasets for land management practices in agricultural development activities in developing nations.

摘要

本研究调查了斯里兰卡凯格勒地区土地利用和土地覆盖(LULC)建模、制图和评估的动态,在政策决策对于农业发展至关重要且 LULC 时间数据集不可用的情况下,这里需要进行土地利用和土地覆盖的建模、制图和变化分析。本研究采用遥感数据集和机器学习算法,旨在比较三种分类方法在研究区域内进行 LULC 分类的准确性,主要使用谷歌地球引擎(GEE)进行时间序列数据的制图。随机森林(RF)、支持向量机(SVM)和分类回归树(CART)三种分类器用于 LULC 建模、制图和变化分析。研究了不同的输入特征组合,以提高分类性能。使用网格搜索交叉验证(CV)超参数优化方法对开发的模型进行优化。结果表明,RF 分类器在准确性度量方面始终优于 SVM 和 CART,这突出了其在 LULC 分类方面的可靠性。对两个时期的土地覆盖变化进行了研究,分别是 2001 年至 2013 年和 2013 年至 2022 年,表明了重大变化,例如橡胶和椰子地区向建成区和荒地的转变。为了实现更高精度的合适分类,本研究建议利用高空间分辨率卫星数据、先进的特征选择方法以及多种空间和时空数据来源的组合。本研究展示了从时间序列 LULC 数据集中获得的实际应用,可用于发展中国家农业发展活动中的土地管理实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验