Suppr超能文献

中国北方农牧交错带农业弃耕与林地扩张的年代际趋势

Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China.

作者信息

Wang Chao, Gao Qiong, Wang Xian, Yu Mei

机构信息

Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico, United States of America.

出版信息

PLoS One. 2015 Nov 12;10(11):e0142113. doi: 10.1371/journal.pone.0142113. eCollection 2015.

Abstract

Land use land cover (LULC) changes frequently in ecotones due to the large climate and soil gradients, and complex landscape composition and configuration. Accurate mapping of LULC changes in ecotones is of great importance for assessment of ecosystem functions/services and policy-decision support. Decadal or sub-decadal mapping of LULC provides scenarios for modeling biogeochemical processes and their feedbacks to climate, and evaluating effectiveness of land-use policies, e.g. forest conversion. However, it remains a great challenge to produce reliable LULC maps in moderate resolution and to evaluate their uncertainties over large areas with complex landscapes. In this study we developed a robust LULC classification system using multiple classifiers based on MODIS (Moderate Resolution Imaging Spectroradiometer) data and posterior data fusion. Not only does the system create LULC maps with high statistical accuracy, but also it provides pixel-level uncertainties that are essential for subsequent analyses and applications. We applied the classification system to the Agro-pasture transition band in northern China (APTBNC) to detect the decadal changes in LULC during 2003-2013 and evaluated the effectiveness of the implementation of major Key Forestry Programs (KFPs). In our study, the random forest (RF), support vector machine (SVM), and weighted k-nearest neighbors (WKNN) classifiers outperformed the artificial neural networks (ANN) and naive Bayes (NB) in terms of high classification accuracy and low sensitivity to training sample size. The Bayesian-average data fusion based on the results of RF, SVM, and WKNN achieved the 87.5% Kappa statistics, higher than any individual classifiers and the majority-vote integration. The pixel-level uncertainty map agreed with the traditional accuracy assessment. However, it conveys spatial variation of uncertainty. Specifically, it pinpoints the southwestern area of APTBNC has higher uncertainty than other part of the region, and the open shrubland is likely to be misclassified to the bare ground in some locations. Forests, closed shrublands, and grasslands in APTBNC expanded by 23%, 50%, and 9%, respectively, during 2003-2013. The expansion of these land cover types is compensated with the shrinkages in croplands (20%), bare ground (15%), and open shrublands (30%). The significant decline in agricultural lands is primarily attributed to the KFPs implemented in the end of last century and the nationwide urbanization in recent decade. The increased coverage of grass and woody plants would largely reduce soil erosion, improve mitigation of climate change, and enhance carbon sequestration in this region.

摘要

由于较大的气候和土壤梯度,以及复杂的景观组成和格局,生态交错带的土地利用土地覆盖(LULC)变化频繁。准确绘制生态交错带的LULC变化图对于评估生态系统功能/服务以及政策决策支持至关重要。LULC的十年或亚十年尺度制图为生物地球化学过程及其对气候的反馈建模,以及评估土地利用政策(如森林转换)的有效性提供了情景。然而,制作中等分辨率的可靠LULC地图并评估其在景观复杂的大面积区域上的不确定性仍然是一个巨大的挑战。在本研究中,我们基于中分辨率成像光谱仪(MODIS)数据和后验数据融合,使用多个分类器开发了一个强大的LULC分类系统。该系统不仅创建了具有高统计精度的LULC地图,还提供了像素级不确定性,这对于后续分析和应用至关重要。我们将该分类系统应用于中国北方农牧交错带(APTBNC),以检测2003 - 2013年期间LULC的十年变化,并评估主要林业重点工程(KFPs)实施的有效性。在我们的研究中,随机森林(RF)、支持向量机(SVM)和加权k近邻(WKNN)分类器在分类精度高和对训练样本大小敏感性低方面优于人工神经网络(ANN)和朴素贝叶斯(NB)。基于RF、SVM和WKNN结果的贝叶斯平均数据融合达到了87.5%的卡帕统计量,高于任何单个分类器和多数投票集成。像素级不确定性地图与传统精度评估结果一致。然而,它传达了不确定性的空间变化。具体而言,它指出APTBNC的西南部地区比该区域的其他部分具有更高的不确定性,并且在某些位置开放灌丛可能被误分类为裸地。2003 - 2013年期间,APTBNC的森林、封闭灌丛和草地分别扩张了23%、50%和9%。这些土地覆盖类型的扩张伴随着农田(20%)、裸地(15%)和开放灌丛(30%)的收缩。农业用地的显著减少主要归因于上世纪末实施的林业重点工程和近十年全国范围的城市化。草本和木本植物覆盖范围的增加将在很大程度上减少该地区的土壤侵蚀,改善气候变化缓解效果,并增强碳固存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d3a/4643031/d711e45acd0a/pone.0142113.g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验