Suppr超能文献

解析深度淬火液态铁中异质颗粒的迁移率:一种无超快组装的两步成核机制。

Resolving heterogeneous particle mobility in deeply quenched liquid iron: an ultra-fast assembly-free two-step nucleation mechanism.

作者信息

Süle P

机构信息

Centre for Energy Research, HUN-REN, Research Institute for Technical Physics and Material Science, Dept. of Nanostructures, Konkoly Thege u. 29-33, Budapest, Hungary.

Wigner Research Centre for Physics, HUN-REN, P. O. Box 49, H-1525 Budapest, Hungary.

出版信息

Phys Chem Chem Phys. 2024 Oct 17;26(40):26091-26108. doi: 10.1039/d4cp02526a.

Abstract

Despite intensive research, little is known about the intermediate state of phase transforming materials, which may form the missing link between liquids and solids on the nanoscale. The unraveling of the nanoscale interplay between the structure and dynamics of the intermediate state of phase transformations (through which crystal nucleation proceeds) is one of the biggest challenges and unsolved problems of materials science. Here we show using unbiased molecular dynamics simulations and spatially resolved atomic displacement maps (d-maps) that upon deep quenching the solidification of undercooled liquid iron proceeds through the formation of metastable pre-nucleation clusters (PNCs). We also reveal that the hitherto hidden PNCs are nearly immobile (dynamically arrested) and the related heterogeneity in atomic mobilities becomes clearly visible on atomic displacement-maps (d-maps) when atomic jumps are referenced to the final crystalline positions. However, this is in contrast to PNCs found in molecular solutions, in which PNCs tend to aggregate, move and crystallize an activated process. Coordination filtered d-maps resolved in real space directly demonstrate that previously unseen highly ramified intermediate atomic clusters with a short lifetime emerge after incubation of undercooled liquid iron. The supercooled liquid iron is neither a spinodal system nor a liquid and undergoes a transition into a specific state called a quasi-liquid state within the temperature regime of 700-1250 K (0.5 > 0.7, where the melting point is ≈ 1811 K). Below 700 K the supercooled system is spinodal-like and above 1300 K it behaves like an ordinary liquid with long incubation times. A two-step process is proposed to explain the anomalous drop in the incubation time in the temperature regime of 700-1250 K. The 1st step is activated aggregation of small atomic clusters followed by assembly-free nearly barrierless ultrafast growth of early ramified prenucleation clusters called germs. The display and characterization of the hidden PNCs in computer simulations could provide new perspectives on the deeper understanding of the long-standing problem of precursor development during crystal nucleation following deep quenching.

摘要

尽管进行了深入研究,但对于相变材料的中间状态仍知之甚少,这种中间状态可能构成纳米尺度上液体与固体之间缺失的环节。揭示相变中间状态(晶体成核通过该状态进行)的结构与动力学之间的纳米尺度相互作用,是材料科学面临的最大挑战和未解决的问题之一。在此,我们通过无偏分子动力学模拟和空间分辨原子位移图(d图)表明,深度淬火时,过冷液态铁的凝固通过形成亚稳预核团簇(PNCs)进行。我们还揭示,迄今为止隐藏的PNCs几乎不移动(动力学受阻),并且当原子跳跃参考最终晶体位置时,原子迁移率的相关不均匀性在原子位移图(d图)上变得清晰可见。然而,这与在分子溶液中发现的PNCs形成对比,在分子溶液中PNCs倾向于聚集、移动并结晶——这是一个活化过程。在实空间中解析的配位过滤d图直接表明,过冷液态铁孵育后会出现先前未见的具有短寿命的高度分支中间原子团簇。过冷液态铁既不是旋节线系统也不是液体,并且在700 - 1250 K的温度范围内(熔点约为1811 K,0.5 > 0.7)会转变为一种称为准液态的特定状态。低于700 K时,过冷系统类似旋节线,高于1300 K时,它表现为具有长孵育时间的普通液体。提出了一个两步过程来解释700 - 1250 K温度范围内孵育时间的异常下降。第一步是小原子团簇的活化聚集,随后是称为晶胚的早期分支预核团簇的无组装近乎无障碍的超快生长。计算机模拟中隐藏PNCs的展示和表征可以为更深入理解深度淬火后晶体成核过程中前驱体发展这一长期问题提供新视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验