Dun Jiale, Wang Jun, Li Juncheng, Yang Qianhui, Hang Wenlong, Lu Xiaofeng, Ying Shihui, Shi Jun
IEEE J Biomed Health Inform. 2025 Jan;29(1):310-323. doi: 10.1109/JBHI.2024.3476076. Epub 2025 Jan 7.
Domain adaptation has demonstrated success in classification of multi-center autism spectrum disorder (ASD). However, current domain adaptation methods primarily focus on classifying data in a single target domain with the assistance of one or multiple source domains, lacking the capability to address the clinical scenario of identifying ASD in multiple target domains. In response to this limitation, we propose a Trustworthy Curriculum Learning Guided Multi-Target Domain Adaptation (TCL-MTDA) network for identifying ASD in multiple target domains. To effectively handle varying degrees of data shift in multiple target domains, we propose a trustworthy curriculum learning procedure based on the Dempster-Shafer (D-S) Theory of Evidence. Additionally, a domain-contrastive adaptation method is integrated into the TCL-MTDA process to align data distributions between source and target domains, facilitating the learning of domain-invariant features. The proposed TCL-MTDA method is evaluated on 437 subjects (including 220 ASD patients and 217 NCs) from the Autism Brain Imaging Data Exchange (ABIDE). Experimental results validate the effectiveness of our proposed method in multi-target ASD classification, achieving an average accuracy of 71.46% (95% CI: 68.85% - 74.06%) across four target domains, significantly outperforming most baseline methods (p<0.05).
域适应已在多中心自闭症谱系障碍(ASD)分类中取得成功。然而,当前的域适应方法主要集中在借助一个或多个源域对单个目标域中的数据进行分类,缺乏处理在多个目标域中识别ASD的临床场景的能力。针对这一局限性,我们提出了一种用于在多个目标域中识别ASD的可信课程学习引导的多目标域适应(TCL-MTDA)网络。为了有效处理多个目标域中不同程度的数据偏移,我们提出了一种基于证据的邓普斯特-谢弗(D-S)理论的可信课程学习过程。此外,一种域对比适应方法被集成到TCL-MTDA过程中,以对齐源域和目标域之间的数据分布,促进域不变特征的学习。所提出的TCL-MTDA方法在来自自闭症脑成像数据交换(ABIDE)的437名受试者(包括220名ASD患者和217名正常对照)上进行了评估。实验结果验证了我们提出的方法在多目标ASD分类中的有效性,在四个目标域上实现了71.46%的平均准确率(95%置信区间:68.85% - 74.06%),显著优于大多数基线方法(p<0.05)。