Zhang Zhijun, Cao Zhongwen, Li Xingru
IEEE Trans Neural Netw Learn Syst. 2024 Oct 8;PP. doi: 10.1109/TNNLS.2024.3466296.
To avoid the task failure caused by joint breakdown during the collaborative motion planning of dual-redundant robot manipulators, a neural dynamic fault-tolerant (NDFT) scheme is proposed and applied. To do so, a joint fault-tolerant strategy is first designed, and it is formulated as a time-varying equality constraint. Second, combining the robot position and orientation control, joint limit constraint, joint fault-tolerant equality constraint, and considering the repetitive motion optimization criterion, a fault-tolerant framework for the dual-redundant robot manipulators based on quadratic programming (QP) is constructed. Then, a varying-parameter recurrent neural network (VP-RNN) is designed to solve the QP issue. The fault-tolerant framework and the VP-RNN constitute NDFT scheme. With the NDFT scheme, the impact of faulty joints on the whole system can be remedied by healthy joints, thereby the end-effectors of the robot can complete the given end-effector task. Finally, computer simulations and physical experiments are implemented to verify the availability, physical realizability, and accuracy of the proposed NDFT scheme in the collaborative execution of end-effector tasks. Comparative experimental results with conventional repetitive motion planning schemes based on neural networks show higher accuracy and smaller joint angle drift.
为避免双冗余机器人机械臂协同运动规划过程中因关节故障导致任务失败,提出并应用了一种神经动态容错(NDFT)方案。为此,首先设计了一种关节容错策略,并将其表述为时变等式约束。其次,结合机器人位置和姿态控制、关节极限约束、关节容错等式约束,并考虑重复运动优化准则,构建了基于二次规划(QP)的双冗余机器人机械臂容错框架。然后,设计了变参数递归神经网络(VP-RNN)来解决QP问题。容错框架和VP-RNN构成NDFT方案。利用NDFT方案,故障关节对整个系统的影响可由健康关节弥补,从而使机器人的末端执行器能够完成给定的末端执行器任务。最后,进行了计算机仿真和物理实验,以验证所提出的NDFT方案在末端执行器任务协同执行中的有效性、物理可实现性和准确性。与基于神经网络的传统重复运动规划方案的对比实验结果表明,该方案具有更高的精度和更小的关节角度漂移。